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1. Introduction 
Reaching carbon neutrality necessitates radical changes in terms of energy sources and industrial 
technologies. While some sectors such as transportation and heating will be able to mitigate their 
emissions via renewable energies in the form of electricity or green hydrogen, the industrial sector faces 
a major challenge where emissions cannot be avoided using carbon-free energy sources only. Some 
industries such as cement and lime emit significant amounts of process emissions, which will continue 
to be generated regardless of the type of energy source employed. These process emissions are 
classified as “hard-to-abate” and will need to be permanently sequestered via carbon capture, utilization 
and storage (CCUS) technologies. The CCUS value chain is characterized by a multitude of 
technological options, most of which are already in use. Nonetheless, current CCUS industrial 
applications remain limited and deploying them on a large scale will be influenced by various techno-
economic aspects as well as their respective policies. 

Novel technologies such as CCUS normally experience successive innovation modes before they reach 
high technological maturity and commercial adoption. In this regard, several mechanisms and strategies 
can be used to promote CCUS technologies and upgrade them from their current demonstration phase 
to market development and commercial diffusion. Such tools can be classified in various ways (e.g. 
market-pull vs. technology-push; market-based vs. voluntary, etc.). Research and pilot projects are an 
effective technology-push tool to decrease the relevant uncertainties, risks and costs and increase the 
technology readiness level. In recent years, different CCUS demonstration projects have been 
implemented and financed differently. This study investigates the role of these projects in the future 
deployment of CCUS technologies, with focus on the cement sector specifically. As this paper focuses 
on CCUS technologies which have not yet reached high maturity levels, CO2 transportation and 
geological storage have been omitted. The discussions center around CO2 capture technologies and 
further sheds light on the potential for CO2 utilization for permanent sequestration such as carbonation 
and mineralization. 

Overall, this study aims to evaluate the status quo of decarbonization of the cement sector via CCUS 
and to discuss the required future activities and measures to enhance the technology’s integration into 
the sector. As such, the paper first provides an overview of existing decarbonization technologies in 
cement production (Section 2). Section 3 then describes a theoretical background on technology 
innovation modes, the role of pilot and research projects in developing a technology learning curve, and 
relevant policies. Subsequently, Section 4 presents different CCUS projects in the European cement 
sector from a techno-economic perspective, and highlights the similarities and differences in terms of 
funding and supporting mechanisms. Section 5 concludes with lessons for deriving future strategies 
and underlines challenges and opportunities of developing similar projects in other regions. 

2. Decarbonization technologies in the cement sector 
Cement production is responsible for six percent of global greenhouse gas (GHG) emissions, rendering 
the sector the second largest industrial emitter after steel (Bataille, 2019). Cement’s carbon footprint 
averages 0.59 tonne of CO2 per tonne of cement (IEA, 2021; OWD, 2020), which varies due to different 
production technologies, fuel mixes, efficiency measures and cement types in each region. While the 
cement production process is simpler than other emission-intensive industries, its decarbonization can 
be more challenging. As shown in Figure 1, the production process begins with limestone, which is 
mixed and grinded with other input materials to prepare the raw material. Input materials are then 
transferred to the kiln, where temperatures can reach 1450o C, in order to produce clinker. In modern 
cement plants, the input materials pass through a preheater and precalciner before reaching the kiln. 
These represent additional modules that can be added to increase energy efficiency and consequently 
decrease heat consumption. The main reaction in the kiln is called calcination, which is the 
transformation process of calcium carbonates (CaCO3) to calcium oxides (CaO). This process is 
responsible for the major part (roughly two thirds) of production emissions (CaCO3 + Heat à CaO + 
CO2) (≈ 525 kg CO2/ton clinker) (Schorcht et al., 2013; ETSAP, 2010). The rest of the direct emissions 
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(approximately one third) can be attributed to the fuel consumption (≈ 3.7 GJ/ton clinker) (IEA, 2022). 
Finally, cement is produced by grinding and mixing the clinker with other materials such as gypsum and 
granulated blast furnace slag. The cement production is also responsible for additional indirect 
emissions due to electricity consumption (≈ 110 kWh/ton cement) (VDZ, 2018). 

                                              Figure 1: The cement production process.  

                       
                                                          Source: based on Kogut et al. (2021) 

As process emissions are intrinsically associated with the calcination process, mitigating them can be 
only achieved via CCUS. CCUS refers to the technique of capturing the CO2, transporting it and 
eventually using or storing it. The carbon capture process is an indispensable phase in the CCUS 
industrial system due to the low CO2 concentration in the flue gas. It is relatively more expensive than 
the following steps (i.e. transportation and utilization or storage) and is also associated with various 
techno-economic challenges, as discussed in a previous OIES Energy Insight paper (Abdelshafy et al., 
2022). Some carbon capture techniques have been recognized as suitable technological options for the 
cement industry, including amine scrubbing, oxyfuel combustion, calcium looping and direct separation. 
As such, CCUS research and pilot projects in the cement industry have focused on using these 
technologies.1  

Carbon capture technologies vary significantly in terms of concepts (Abdelshafy et al., 2022), 
efficiencies, energy requirements (Jensen, 2015; Palma, 2020; Gardarsdottir et al., 2019), technology 
readiness level (TRL) (Kearns et al., 2021), and capital and operational costs (CAPEX and OPEX) 
(Anantharaman et al., 2018). For example, amine scrubbing has a high TRL, is already used in some 
CCS projects, and can utilize the waste heat available in the cement plant (Bellona, 2020). However, 
the technology is very expensive. Some technologies are expected to be cheaper, but there are 
challenges with their upscaling (e.g. LEILAC) or they have not been proven at an industrial scale yet. 
Other technologies (e.g. oxyfuel) are reliable and could be cost efficient. Nonetheless, the final CO2 
purity may not be suitable and an additional module (compression and purification unit) may be needed. 
To that extent, pros and cons of each technology must be considered and a comprehensive analysis is 
required. Moreover, as most technologies to be discussed are still under development, there is an 
evident discrepancy in the literature regarding various techno-economic aspects, even for the same 
technology.  It should be also highlighted that not all available information can be fully reliable as each 
technology developer or provider normally praises its own technology. Hence, any information, numbers 
or values regarding superiority should not be adopted without caution. 

 

 
 
1 A brief technical background on each technology is provided in the annex of this paper. 
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3. The role of research and pilot projects in technology development  
Any technology normally passes through various stages and innovation modes before it becomes 
commercially available in the market (IRENA, 2013). As shown in Figure 2, a technology’s lifecycle can 
be classified into five phases: (1) basic science and research & development, (2) applied research and 
development, (3) demonstration, (4) market development, and (5) commercial diffusion. These phases 
can be also grouped into three ‘innovation modes’: technology venturing, commercial scale-up, and 
adaptation (where low costs and risk & high maturity are reached). Technology venturing refers to the 
activities and efforts that are carried out to move the technology from the research and development 
phases to demonstration. At this phase, the technology is normally associated with low maturity levels, 
while associated risks and costs are high. Thereafter, the commercial scale-up phase prepares the 
technology for commercial diffusion. Here, technology risks are lower but economic uncertainties are 
high. Finally, adaptation is the phase when the technology enters a new market. Numerically, the 
technological maturity is indicated by the TRL scale which is a widely-used KPI and ranges between 1 
and 9 (GAO, 2023). 

                                      Figure 2: Innovation modes of clean technologies 

 
                                                                Source: adapted from IRENA (2013).  

The reason behind these developments is that “good designs are not always enough”, where 
technologies are only proven and improved by actual operations (i.e. learning by doing) (Ferioli et al., 
2009). The first version of any technology or plant, “First-of-a-kind” (FOAK), is usually more expensive 
and risky than the following ones, “Nth-of-a-kind” (NOAK), in terms of both CAPEX and OPEX (Rubin, 
2019; Rubin et al., 2021). In terms of CAPEX, new technologies require more construction time, design 
margins, redundancy and spare items. Furthermore, new technologies are associated with peculiar 
designs, nonstandard items, materials and contracts (i.e. there are no economies of scale). Special 
measures and analyses are also needed to ensure the safety of the design and operations. 
Correspondingly, acquiring the required permits is more challenging. Such elements have a significant 
effect on CAPEX. For example, process contingency costs represent more than 40% of the capital costs 
of a new technology, whereas this figure can be less than 10% for a mature technology (Theis, 2019). 
Similar figures are also relevant for the different CCUS technologies discussed in this paper 
(Gardarsdottir et al., 2019). Similarly, the operational costs of FOAK are higher for various reasons. For 
instance, new technologies can require new materials or chemicals, which may not be available on a 
commercial scale. The performance of these inputs may also not be guaranteed. Assumptions 
regarding fixed operational costs (e.g. maintenance, labor, etc.) may also higher and more conservative 
for new technologies.  
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This subsequently highlights the importance of the “learning curve”. A technology learning curve shows 
the relationship between technology cost and its cumulative installed capacity. Specifically, the learning 
rate can be defined as “the relative cost reduction (in %) after each doubling of cumulative production” 
(Ferioli et al., 2009). Existing technologies with high levels of maturity took a long time to experience 
such innovation modes and develop their own learning curves. These developments took place within 
conventional market conditions and without an urgent need to reach certain milestones at specific times. 
This is in contrast to the development of decarbonization technologies: with an aim to reach carbon 
neutrality within the next three decades or so, relevant technologies need to reach a meaningful level 
of maturity and achieve low costs as quickly as possible. However, this represents a major challenge 
from an economic perspective. The real costs of negative externalities due to the environmental impacts 
(GHG emissions) are not already reflected in the carbon prices or taxes (Ferioli et al., 2009). Moreover, 
such costs cannot be introduced promptly due to social and economic reasons (e.g. carbon leakage). 
Therefore, on the one hand, the technology needs to be demonstrated and used to develop a learning 
curve, otherwise costs will not decrease. On the other hand, the industrial sector cannot adopt 
breakthrough clean technologies such as CCUS (especially at current high costs) as they will not be 
able to retrieve costs back via higher prices. As such, government intervention is required to address 
such a market failure. Figure 3 depicts the stages of this development.  

                 Figure 3: Technology development, learning investment and future benefit 

 
                                    Source: based on Wiesenthal et al. (2012); Neuhoff (2005); Grubb (2004). 

The blue curve represents the learning curve of the new technology (e.g. cement production + with 
CCUS). In the beginning, the technology is at its highest cost (point A), for instance when a FOAK plant 
is deployed. The green curve illustrates the cost of the established technology (e.g. cement production 
without CCUS), which is significantly lower than the new technology. The incremental increase of the 
environmental costs in the form of higher CO2 prices will result in the dotted green curve. As depicted, 
two areas can be identified on the curve: the learning investment and the future benefit. As the 
cumulative installed capacity of the new technology increases, the technology cost decreases. A cost 
difference between the new and established technologies remains until both the blue and green curves 
intersect. Herein, the area between both curves before the intersection point is called the learning 
investment, which refers to the additional expenditures needed for learning by doing (Grubb, 2004; 
Wiesenthal  et al., 2012), while future benefits are represented by the area following the breakeven 
point (point B). Expectedly, higher CO2 prices which occur earlier in this process would result in lower 
investments and higher benefits (Neuhoff, 2005). 

Following on this, the subsequent question is “who should bear the learning investment?”. Compared 
with other industries, such as information technology, required decarbonization investments can be too 
high, and therefore are too risky. Here, governmental intervention is indispensable for providing an 
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enabling environment for investment (Hansen et al., 2017). Based on the specific objectives and the 
TRL of decarbonization technologies, there are various options and forms for such interventions (Grubb, 
2004). Generally, different policies can be classified into two major categories: technology-push vs 
market-pull2 (Table 1) (Groba and Breitschopf, 2013).  

Technology-push policies focus on supply by means of decreasing the cost of developing the 
technology, which is necessary at early stages of innovation (Nuñez-Jimenez et al., 2022; Brem and 
Voigt, 2009). For example, public funding can be an effective approach for decreasing technology costs 
and investment risks. On the contrary, market-pull policies aim at increasing demand, which also results 
in further technology developments. Hence, market-pull options are more suitable after the technology 
has reached a higher level of maturity. Other examples include imposing specific standards and carbon 
pricing such as introducing a carbon tax, amongst others. As the paper focuses on technology-push 
policies, and more specifically on the R&D and demonstration projects, the following section presents 
the major milestones that have so far been reached in decarbonizing the cement sector in Europe. This 
subsequently demonstrates the upcoming steps and areas of focus for CCUS technology deployment 
in the sector.   

                   Table 1: Policies and mechanisms used for promoting clean technologies 

 
                                                   Source: based on Groba and Breitschopf (2013). 

4. CCUS pilot project in the European cement sector  
There are several research and pilot projects that focus on CCUS in Europe. Here we discuss the 
projects that focus on the cement sector and also show the wide range of investigated technologies, 
partnerships, funding schemes and budgets. Compared with nationally-funded projects, European 
projects usually have larger scales due to the size of their funding schemes. Also, consortiums normally 
include several stakeholders and different countries, which ensures know-how dissemination. The EU 
framework programme for research and innovation is one of the most renowned EU funding schemes. 
Its most recent two program versions are (1) Horizon 2020, which ran between 2014 and 2020 with a 
budget of approximately 80 billion EUR, and (2) Horizon Europe, which started in 2021 and will last till 
2027 (budget 95 billion EUR) (EC, 2021). The program’s objectives are translated in detailed structure 
and a series of funding mechanisms and sub-programs. These programs have three main pillars or 
priorities – excellent science, industrial leadership, and societal challenges, each of which is further 
divided into subcategories (EC, 2018, 2014). While elaborating on the targets and mechanisms of these 
programs remains out of this paper’s scope, it is noteworthy that they provide significant consideration 

 
 
2 Market-pull policies can be also grouped into technology-specific and non-technology-specific, or market-based, command & 
control, and voluntary. 
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to themes of climate, industrial transformation and decarbonization. As such, various CCUS projects 
have been funded by the program (as presented later). The program also allows for public-public 
partnerships, i.e. co-funding via EU and other governments (e.g. ERA-NET Co-fund) (ERA Learn, 
2022). As an example, ACT3, an ERA-NET co-fund, is an important international initiative that aims at 
promoting CCUS technologies (Cordis, 2022b; ACT, 2022a) which has so far funded more than 30 
CCUS projects (ACT, 2022b). 

Another crucial EU funding scheme is the Innovation Fund, which is exclusively dedicated for promoting 
low-carbon and green technologies (European Commission, 2022a). It is one of the largest global 
funding schemes that focus on carbon neutrality, and mainly targets four fields: energy-intensive 
industries, production and use of renewable energies, energy storage, and carbon capture and 
utilization/storage (Kitscha, 2022). The Innovation Fund is financed by revenues from the EU-ETS with 
an estimated budget of 38 billion EUR until 2030. The fund supports two types of projects: large-scale 
(i.e. CAPEX > 7.5million EUR) and small-scale (CAPEX < 7.5million EUR). As will be discussed later, 
the capital expenditures of the supported large-scale projects in the first two calls are significantly higher 
than 7.5million EUR. In the first call, 7 large-scale projects were granted 1.1 billion EUR (Marcu et al., 
2022). This amount was enhanced by 60% in the second call (1.8 billion EUR) to support 17 large-scale 
projects (Trendafilova, 2022; European Commission, 2022g). In these two calls, several CCUS projects 
have been accepted which focus on a wide range of aspects and operations along the CCUS supply 
chain (GCCSI, 2022). 

In contrast, the scale of CCUS projects supported by national funding schemes are mostly smaller than 
European ones; however, there are examples of generous national and regional funds such as the 
Longship project in Norway (discussed later). From a broader perspective, there are numerous national 
programs that support research activities on decarbonization, which also include CCUS. For instance, 
various CCUS projects in Ketzin pilot site (close to Berlin) were supported by the German federal 
ministry of education and research (BMBF) and the Germany federal ministry of Economics and 
Energy4 (Ketzin, 2022). Some regions and federal states also support similar projects and research 
activities. For example, the SCI4climate.NRW project focuses on decarbonizing heavy industries in the 
German federal state of North Rhine Westphalia (NRW) and was financed by the state’s ministry of 
economic affairs, innovation, digitalization and energy (SCI4climate.NRW, 2022). There are also some 
national research programs or calls that focus exclusively on CCUS research. For example, CLIMIT is 
a dedicated national program for CCS research in Norway (CLIMIT, 2022). It should be also noted that, 
although the majority of CCS projects are funded publicly, the private sector still burdens expenses, 
either within the publicly-funded projects or through research activities that are entirely financed by the 
companies. Both paradigms are also presented and discussed in the following examples. 

4.1 Longship project 
The Longship CCS project aims at capturing CO2 from two industrial sites in Norway and store it 
permanently in an offshore reservoir (around 3 km below seabed) (Lepic, 2021). The project is the first 
CCS project to cover the whole CCUS value chain (Gassnova, 2020; Bellona, 2020). In total, 800,000 
tCO2 can be captured from Norcem’s cement plant in Brevik and the waste incineration plant of Hafslund 
Oslo Celsio5 in Oslo (400,000 tCO2 each) (Figure 4). According to the announced plans, the project 
should be commissioned in 2024 (Gassnova, 2020). The cement plant of Norcem in Brevik is going to 
adopt a post-combustion capture technology (amine scrubbing), which will be provided by Aker Carbon 
Capture. The project is considered as the coronation of several preparations in the last two decades. 
For example, various desk analyses and small-scale tests have been carried out in the cement plant in 
Brevik since 2005 in order to investigate the technology and assess its techno-economic feasibility 
(Bjerge and Brevik, 2014; Brevik, 2022). On the national level, Norwegian advancements in the field of 
CCS have also been very distinct and effective. For example, the Technology Centre Mongstad (TCM) 

 
 
3 ACT stands for Accelerating CCS Technologies 
4 Now: the Germany federal ministry of Economics and climate protection (BMWK) 
5 Formerly Fortum Oslo Varme 
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was established in 2012, representing the largest carbon-capture testing center to date 
(ClimateChance, 2021). Government support covers roughly two thirds6 of the Longship project costs 
in the first phase (Knudsen et al., 2022). Such significant amount of public financial support (18 billion 
NOK ≈ 1.8 billion USD) is unprecedented for a climate project in Norway, likely also in comparison to 
many other countries (NMPE, 2021; Lepic, 2021). Moreover, the state also acts as an intermediary7 
between CO2 emitters and the Northern Lights project, and takes the burdens on significant risks (e.g. 
CO2 leakage) (NMPE, 2020). 

                                                       Figure 4: The Longship project. 

 
                                                                     Source: BrevikCCS (2022). 

4.2 Horizon 2020 projects 
There are various Horizon 2020 projects that focused on CCUS in the cement industry. First, there is 
CEMCAP (CO2 capture from cement production), a project which aimed at identifying and analyzing 
carbon capture technologies suitable for the cement industry and provide the required techno-economic 
analysis needed for the large-scale projects. In this project, five technologies were selected to be 
investigated in detail, mainly via desk analysis (amine scrubbing, chilled ammonia, oxyfuel, membrane-
assisted CO2 liquefaction and calcium looping). Knowledge dissemination has been very important in 
this project. The analyses were both copious and informative, with several scientific studies published 
based on the project’s outcomes, including: (Lena et al. 2019; Ditaranto and Bakken 2019; Alonso et 
al. 2017; Voldsund et al. 2019; Gardarsdottir et al. 2019). The extensive simulation and desk 
assessments of the mentioned technologies can be considered a comprehensive reference.8 The 
project’s budget was 10million EUR, of which roughly 90% was covered by the EU and 700k EUR was 
a contribution from the Swiss Government (Cordis, 2022c; CEMCAP, 2022b). The project included 15 
partners9 and lasted 42 months (2015-2018). 

Second, LEILAC (Low Emissions Intensity Lime and Cement), which is the only pilot-scale project that 
demonstrates the direct-separation capture technology discussed earlier. The first phase (LEILAC 1) 

 
 
6 There is a discrepancy about the exact governmental support 
7 There is actually no direct contract between the emitters and Northern Lights project 
8 A full list of the project’s reports and publications can be found on the project’s website (CEMCAP, 2022a). 
9 Italcementi Group (now Heidelberg Materials), NORCEM, Heidelberg Materials (formerly HeidelbergCement), GE, GE power, 
IKN, Thyssenkrupp, SINTEF, ECRA, TNO, ETH Zürich, Unoversity of Stuttgart, Politenco di Milano, CSIC and VDZ 
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has been a Horizon 2020 project with 11 partners10 and a duration of approximately 5 years (2016-
2021) (Figure 5). Within this phase, the technology developed by Calix was tested in Lixhe (Belgium) 
with a capture capacity of 25,000 tCO2 per year (Beumelburg, 2021). The project budget was roughly 
21million EUR, of which more than 50% was funded by the EU (Cordis, 2022f). The success of the first 
pilot project led to the initiation of the second phase (LEILAC 2), which is also funded as a Horizon 2020 
project. LEILAC 2 aims at scaling up the capture capacity four times to reach 100,000 tons of CO2 per 
year, which corresponds to one fifth of the cement plant that hosts the project (Heidelberg Materials’ 
plant in Hanover). Moreover, the project aims to assess storage options and the possibility of using 
more types of energy inputs (i.e. electrification,  alternative and renewable fuels) (Coppenholle and van 
der Meer, 2021). The overall budget is estimated to be more than 1.5 times the amount of the first 
project (approximately 35million EUR), of which the EU will contribute 16million EUR (Cordis, 2022g). 
Similar to the first phase, the project encompasses several industrial and academic partners11 and is 
supported by 6 entities12 (LEILAC, 2022). 

                           Figure 5: Example of a Horizon project’s consortium (LEILAC 1). 

 
                                                                    Source: Cordis (2022f). 

Third, ACCSESS project (providing access to cost-efficient, replicable, safe and flexible CCUS), which 
was launched in 2021 and will last for four years. The project activities focus on CCUS in different 
industries from an interdisciplinary perspective, which is why the consortium include a wide range of 
stakeholders13. The total cost is approximately 18.5million EUR, of which 15million EUR are provided 
by the EU (Cordis, 2022a). The project activities are classified into three areas: (1) conventional cement 
kiln & new capture technology, (2) conventional capture technique & new cement kiln, and (3) concrete 
carbonation (ACCSESS, 2022d). The novel carbon capture technology is a combination of two new 
concepts: enzymatic solvent and rotary packed bed (RPB) absorber. Due to the low regeneration 

 
 
10 Heidelberg Materials, CEMEX, Lhoist, PSE, Quantis, Tarmac, The Carbon Trust, TNO, Calix, Solvay, and Imperial College 
London 
11 Heidelberg Materials, CEMEX, BGR, The Centre for Research and Technology Hellas, CIMPOR-Indústria de Cimentos, 
ENGIE Laborelec, Calix, The Geological Survey of Belgium, IKN GmbH, Lhoist, Politecnico di Milano and the Port of Rotterdam 
12 GCCA, GCCSI, CEMBUREAU, ECRA, University of Clausthal and EuLA 
13 SINTEF, Stora Enso, Heidelberg Materials, Hafslund Oslo Celsio, SEIPEM, Prospin, Neustark, Linde, KHD Humboldt 
Wedag, Equinor, Total Energies, Technology Centre Mongstad, VBSA, ETH Zürich, VDZ, Fraunhofer IAO, Chalmers University 
of Technology, Heriot-Watt University 
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temperatures of the enzymatic solvent (up to 80oC) and the compact size of the RPB absorber, energy 
and costs savings can be achieved (ACCSESS, 2022b). 

The project offers an exemplary model of the synergies between several industrial partners and 
effective distribution of roles. This is clearly manifested in the project’s roadmap to upgrade the TRL of 
the new capture technology to reach TRL 7 (ACCSESS, 2022a). The lab-scale RPB technology is to 
be tested by Prospin in Poland and the Saipem solvent will be tested in the waste-to-energy plant of 
Hafslund Oslo Celsio in Oslo, Norway. Afterwards, both technologies are to be commissioned in 
Technology Centre Mongstad (Norway). Finally, two pilot-scale test campaigns are planned to be 
carried out for six months in the pulp and paper mill of Stora Enso in Skutskär (Sweden) and the cement 
plant of Heidelberg Materials in Górażdże (Poland) (ACCSESS, 2022c). 

Fourth, the Cleanker project (clean clinker production by looping process), which aims at demonstrating 
a calcium-looping capture technology at TRL 7. The project investigates an integrated configuration of 
the technology which is provided by IKN and tested in the Vernasca cement plant of Buzzi Unicem 
(Italy). The technology also uses an oxyfuel combustion during the calcination process in order to obtain 
a pure CO2 stream (Fantini, 2019). Moreover, the project aims at testing different types of raw meals 
and demonstrating carbon sequestration via mineralization (Fernandez et al., 2019; Yörük et al., 2020; 
Magli, 2021). Besides the technical assessments, the project also investigates the economic and 
environmental aspects (Sessa and Kounina, 2019; Fantini, 2018) and considers the subsequent phases 
after CO2 capture (i.e. transportation and storage) (Shogenova et al., 2021; Shogenova et al.). The 
consortium comprises 13 stakeholders 14  that represent 5 EU countries 15  and various profiles 
(academia, industrial associations and companies) (Figure 6). The project started in 2017 and is 
planned to be accomplished in the first quarter of 2023. The total budget is 9.2million EUR, of which 
approximately 9million EUR is an EU contribution and the rest is provided by the Chinese Government 
(Cordis, 2022e). A full list of the project’s reports and publications can be found on the EU CORDIS 
platform (Cordis, 2022d). 

                           Figure 6: Example of a Horizon project’s consortium (Cleanker) 

 
                                                                       Source: Cordis (2020). 

 
 
14 Leap, CSIC, VDZ, Politecnico di Milano, Tallinn University of Technology, Lappeenranta University of Technology, University 
of Stuttgart, Tsinghua University, Quantis, IKN, Buzzi Unicem, Heidelberg Materials and Amici della Terra 
15 Including two stakeholders from Switzerland and China 
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Other projects have been financed via the ACT co-fund, such as AC²OCem project (Accelerating 
Carbon Capture using Oxyfuel technology in Cement production) (AC²OCem ,2022c). As the Oxyfuel 
technology has been also investigated in other previous and ongoing projects, the analyses do not start 
from scratch but rather address the knowledge gaps and build on existing know-how. The project 
activities, which include analytical and experimental assessments, should support increasing the TRL 
of the 1st generation oxyfuel to reach 8 (currently 6) and the TRL of the 2nd generation to reach 6 
(currently 2). For the 1st generation technology, the analyses focus on designing and optimizing the 
retrofitting of existing cement plants. Here, the project considers two actual case studies: Lägerdorf 
cement plant of LafargeHolcim in Germany and Slite cement plant of Heidelberg Materials in Sweden 
(Kroumian et al., 2021). The pilot-scale experiments of the 2nd generation have also been carried out at 
the institute of combustion and power plant technology (IFK) – University of Stuttgart (Volosund et al., 
2021). Particularly, this project investigates using 100% alternative fuels, which can lead to negative 
emissions if bio-based energy sources are used (AC²OCem, 2022c). Also, similar to other projects, 
minimizing the energy consumption as well as CAPEX and OPEX is one of the main project’s objectives 
(Maier, 2019). The respective consortium comprises 11 stakeholders16 from five countries (Germany, 
France, Greece, Norway and Switzerland) (AC²OCem, 2022b). The project started at the end of 2019 
with a duration of 3.5 years and a budget of roughly 4.3million EUR. Approximately 3million EUR have 
been provided by the ACT program and the rest secured via private financing and financial support from 
the governments of the participating countries (AC²OCem, 2022a; VDZ, 2022). 

Another ACT project is ANICA, which focuses on an advanced indirectly heated carbonate looping 
process (Ströhle et al., 2021). The technology is based on heating the calciner indirectly by means of 
heat pipes (Greco-Coppi et al., 2021a; Konstantina et al., 2021). Similar to AC²OCem, the project also 
includes both analytical assessments and experimental analyses, which aim at reducing the capture 
costs and improving the technology to reach TRL 6 (ANICA, 2022d). Besides modelling and process 
simulation, the concept has been tested in a pilot plant with a capacity of 300 kWth at TU Darmstadt 
(ANICA, 2022a; Ströhle, 2020). Additionally, the project provides a design of 20 MWth demonstration 
plant, which is needed to increase the TRL (ANICA, 2022b). The project also focuses on using 
alternative and biogenic fuels, which can lead to negative emissions and cast savings (Greco-Coppi et 
al., 2021b). The possibility of integrating the direct separation concept (LEILAC) is also investigated 
(ANICA, 2022c). Moreover, the analyses include techno-economic and environmental assessments of 
different scenarios and conditions (Rolfe et al., 2022). The consortium of ANICA consists of twelve 
stakeholders17 from three countries (Germany, Greece and the UK), and its duration and budget are 
analogous to AC²OCem (ACT, 2019). 

4.3 Upcoming & recently-launched large-scale projects (Private & Innovation Fund) 
Recently, some pilot- and industrial-scale CCUS projects have been announced in the cement sector, 
which demonstrate the momentum and techno-economic advancements that the preceding research 
projects have achieved. Although there is still no detailed information or reports on these new projects, 
available announcements and descriptions already provide some insights on how they are going to 
develop in the coming decades. For instance, the Catch4climate is a joint venture that was recently 
established in order to demonstrate the pure-oxyfuel technology at a pilot scale (Catch4climate, 2022). 
The capacity of the test kiln is approximately 165,000 t/y, which is under construction in the 
Mergelstetten cement plant of Schwenk (Henrich, 2021). The required investments are more than 
100million EUR, which are going to be covered by four European cement producers (i.e. Heidelberg 
Materials, Dyckerhoff, Schwenk, Vicat) (Thormann, 2021). The pure-oxyfuel technology (polysius) is 
provided by Thyssenkrupp Industrial Solutions (ThyssenKrupp, 2022). According to the announced 
plans, the project will operate within the next two years (Kaschke, 2021). 

 
 
16 University of Stuttgart, SINTEF, NTNU, VDZ, CERTH, Thyssenkrupp, Heidelberg Materials, LafargeHolcim, Titan, Air Liquide 
and Total. 
17 TU Darmstadt, University of Erlangen–Nuremberg, VDZ, Dyckerhoff, Lhoist, SUEZ Recycling, ESTRA, Ulster university, 
Calix, CERTH and CaO Hellas. 
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There are also five relevant large-scale projects that have been selected for the Innovation Fund. First, 
the GO4ECOPLANET project in the cement plant of LafargeHolcim in Kujawy (Poland). The total 
project costs are approximately 4.7billion EUR, of which 260million EUR are capital costs and 265million 
EUR are provided by the EU (European Commission, 2022e). The project should sequester more than 
10Mt CO2 in the first decade of operations, using the CryoCap FG technology developed by Air Liquide 
which is a combination of both adsorption (Pressure Swing Adsorption/PSA) and cryogenic carbon 
capture techniques (Rodrigues et al., 2021; Global Cement, 2022). The captured CO2 will be 
transported to Danzig via railway and then shipped to the North Sea for geological storage. 

The second project is Carbon2Business (C2B), which will be implemented in Lägerdorf cement plant 
of LafargeHolcim (Germany). In total, the project will cost roughly 6billion EUR, of which 410million EUR 
are capital costs and 110million EUR are the EU contribution (European Commission, 2022c). Based 
on the official announcement, the second-generation oxyfuel technology will be used and approximately 
13Mt CO2 will be sequestered in the first ten years of operations. The project location should also allow 
future synergies within the potential industrial cluster of Westküste 100 (e.g. CCU) (Holcim Deutschland, 
2022; Westküste, 2022). Third, there is the CalCC project in the lime plant of Lhoist in Réty (France). 
The project will also adopt the cryogenic technology (Cryocap) of Air Liquide and is planned to 
sequester 5.8Mt of CO2 (European Commission, 2022d). The captured CO2 is planned to be transported 
by a pipeline to Dunkirk and then via shipping to the North Sea for geological storage. The total project 
costs are expected to be more than 3billion EUR, of which 200million EUR are capital costs and 
125million EUR will be provided by the EU. 

Fourth, the ANRAV project in Devnya cement plant of Heidelberg Materials (Bulgaria) is expected to 
sequester 7.8Mt CO2 in the first decade of operations. In terms of technology, not a lot of technical 
information is currently published on the project. According to the EU innovation fund platform, the 
project will demonstrate a hybrid capture technology concept (i.e. Oxyfuel and Amine) and will be 
supported by 190million EUR from the EU (European Commission, 2022b). The company also 
announced that the captured CO2 will be transported via a pipeline to be geologically stored in the Black 
Sea (Beumelburg, 2022). Finally, the K6 program in the cement plant of EQIOM (CRH) in Lumbres 
(Hauts de France) France will use two technologies (i.e. oxyfuel and cryogenic carbon capture) and 
eliminate 8.1Mt of CO2 in the first decade of operations (European Commission, 2022f). The project 
partner Air Liquide is going to supply the oxygen and provide its cryogenic technology (Cryocap) 
(AirLiquide 2022). The project’s location (Northern France) will also facilitate transporting the captured 
CO2 to the North Sea to be geologically stored. Moreover, it will also allow synergies with the potential 
CO2 hub in Dunkirk. The total costs of both the K6 program and the ANRAV project are not announced, 
but will likely be in the range of costs of other Innovation Fund projects (i.e. billions). The K6 program 
is going to receive approximately 150million EUR as an EU contribution. 

4.4 Carbonation and mineralization projects (National Fund) 
Although the majority of projects focus on carbon capture, there are some European and national 
projects that have been dedicated to CO2 sequestration via carbonation and mineralization. An example 
is CO2MIN which is a BMBF project that investigated the potential of mineralization from an 
interdisciplinary perspective for three years (2017-2020) (BMBF, 2017). The project had three 
stakeholders (Heidelberg Materials, IASS Potsdam and RWTH Aachen University) and a budget of 
approximately 2.9million EUR. The project generated a wide-range of analyses such as optimizing the 
mineralization process design (Bremen et al., 2022), techno-economic modelling and cost analyses 
(Strunge et al., 2022b; Strunge, 2021), environmental assessment (Ostovari et al., 2021), policy 
analysis (Olfe-Kräutlein et al., 2021), and studying the perception of the relevant stakeholders, and 
providing a multi-criteria decision analysis (Strunge et al., 2022a). The C²inCO2 is a more recent BMBF 
project that focuses on carbonating recycled concrete and subsequently using it (Schmitt, 2020). The 
project started in 2020 and will last till 2023, with a budget of 3.2million EUR (BMBF, 2020). As the 
project aims at investigating all relevant upstream and downstream operations, the consortium is 
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composed of seven stakeholders18 that represent the whole value chain (Fraunhofer, 2021; CO2WIN, 
2020). According to the announced plans, the analyses shall include (1) improving the recycling process 
in order to yield a concrete waste stream with a higher quality, (2) investigating the carbonation process 
and using the carbonated outcomes in the cement production, and (3) conducting a life cycle 
assessment. 

FastCarb is another project that has also focused on carbonating recycled concrete (Torrenti et al., 
2022). The project had 23 stakeholders19 and was supported by the French Government (FastCarb, 
2021b). The analyses were carried out in both lab and industrial scales to address various knowledge 
gaps. The lab experiments aimed at demonstrating the concept and assessing the impacts of the 
relevant factors on the carbonation performance (e.g. water content, physical properties, CO2 
concentration, kinetics, etc.) (Sereng et al., 2020; Sereng et al., 2021). Industrial-scale trials were also 
conducted in two cements plants (Créchy & Val d’Azergues) via retrofitting and using existing equipment 
(Izoret et al., 2023). Additionally, life cycle assessment and cost analysis were also conducted in order 
to study the environmental impact the economic feasibility (FastCarb, 2021a). Another project is 
RECODE (Horizon, 2020), which focused on a different carbonation technique (RECODE, 2022b). The 
analyses focused on the potentials of using the flue gas of the cement plant to produce calcium 
carbonates nanoparticles and other chemical products (RECODE, 2020). The project ran for 5 years 
(2017-2022) with a consortium20 of 13 stakeholders (6 EU countries) and a budget of approximately 
8million EUR, which was fully covered by the EU (Cordis, 2022h).21  

5. Discussion and conclusions  
The paper investigated several projects that cover various types of technologies and also different 
funding schemes and paradigms (e.g. EU, national and industrial). These projects do not only provide 
important scientific outcomes, but their wide variety also offers a unique opportunity to empirically study 
their development and impact on technology deployment. Although it is not easy to determine the 
usefulness of each project individually or track the exact trajectory of their technology’s development, 
their respective TRL increase in the past years demonstrates the overall value and effectiveness of 
these projects. Analyzing the large number of projects that have been financed and carried out in the 
last decade is of importance to derive and improve R&D strategies, not only in Europe but also in other 
regions. It is important to note that such projects and funding programs should not be isolated from 
other policies and tools (e.g. Carbon Border Adjustment Mechanism and Carbon Contracts for 
Difference) or other relevant lending and investment programs (e.g. InvestEU, NextGenerationEU) 
(Janda and Sajdikova, 2022). Each of these aims at addressing a specific challenge or market failure, 
but they jointly provide the required enabling environment for relevant technologies to be developed 
and deployed at scale. 

Admittedly, such number, scale and types of projects may not be found in other regions outside the EU, 
even in other developed and industrialized economies. Investigating why that is the case remains 
beyond the scope of this paper, but there are some obvious factors behind this phenomenon. First, 
there is a high public awareness and an interest from EU citizens (taxpayers) in environmental themes, 
which places pressure on policymakers. This has recently clearly manifested in a multitude of EU and 
national environmental policies (e.g. the green deal and the European climate law). Second, companies 
dare to invest in developing and testing these technologies as there is a good level of mutual trust 

 
 
18 Fraunhofer IBP, Heidelberg Materials, Thyssenkrupp, Loesche GmbH, Sika, Bauhaus University Weimar, RWTH Aachen 
University 
19 Université Gustave Eiffel, CSTB, Cerema, CERIB, ATILH, CEMEX, Ciments Calcia, CLAMENS, EQIOM, LAFARGE France, 
SNBPE, UNPG, VICAT, Saint-Gobain, FFB, Nicolas Jacquemet EIRL, Ecole des Ponts ParisTech, ESTP, GeM, Icube, LASIE, 
EPAMARNE 
20 Fonadazione Istituto Italiano di Tecnologia (IIT), Avantium, Certh, European Research Institute of Catalysis, DVGW, KIT, 
Politecnico di Torino, RUG, Hysytech, Iolitec Ionic Liquids Technologies, Uab Modernios e-Technologijos, MTM and Titan 
cement 
21 A full list of outcomes (reports and publications) can be found on the project’s website (RECODE 2022a). 
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between the policymakers and the industrial system. Even more, there is perhaps a strong notion that 
the announced targets have to be, or will be, achieved, where today’s investments will yield future 
savings and benefits. Third, time/urgency is one of the main challenges associated with the energy 
transition. If carbon neutrality were to be met in the coming three decades, any potential useful 
technology, implemented in any of the major emitting sectors, should not be disregarded. 

Fourth, low-carbon technologies offer new business models and opportunities. For example, the 
Norwegian CCS activities (e.g. Longship) should not only be seen from an environmental lens. The 
potential economic benefits which can be accrued, including creating job opportunities and becoming a 
prospective carbon hub, can be an additional motive to promote the CCS supply chain and relevant 
research activities and technologies (Knudsen et al., 2022). Another significant aspect which is explicitly 
relayed by the Norwegian Government is the importance of the project and the whole CCS supply chain 
in the production of blue hydrogen (NMPE, 2021). Such notion or conception should be also clear for 
other countries which have significant reserves of hydrocarbons (e.g. Saudi Arabia/gulf region). On the 
one hand, CCS can transform fossil energy resources to clean energy carriers (i.e. blue hydrogen), at 
least as an intermediate solution in the short- and mid-term. On the other hand, depleted oil and gas 
fields are also ideal candidates (and also cheaper than other alternatives) for storing hard-to-abate CO2 
(e.g. from the cement industry), not only from national producers but also cross-border ones 

Along the CCS supply chain, carbon capture is considered as the main bottleneck towards the 
technology’s deployment, due to its high costs and techno-economic uncertainties. This is why a large 
number of CCS projects have been focusing on developing capture technologies in order to make them 
cheaper and more reliable. In the same context, the majority of these projects have been publicly funded 
and supported as an effective technology-push policy. It should be highlighted that governmental 
support should not only be limited to the financial aspects. As some of these projects and technologies 
are being established for the first time, the flexibility and understanding of the relevant governmental 
bodies are also mandatory (e.g. for permitting) (Climate Group, 2021). Policymakers and strategists 
should be also aware of the temporal dimension of these undertakings as a long time will be needed 
until such sophisticated technologies reach a high TRL. For example, projects under the EU Innovation 
Fund are going to be operational by the end of this decade.  

It is clear that main industrial partners in the aforementioned projects are large and multinational 
companies. These operators can benefit from economies of scale by allocating the financial and know-
how resources that will support many plants. Here, lessons and know-how can be transferred to other 
plants and subsidiaries of the same company. In comparison, smaller companies may not afford that. 
It is thus unclear whether smaller companies which are involved in the cement business in some 
European countries, such as in Germany, would be capable of surviving without support for such 
expensive research activities and required investments. The industrial sector cannot, and should not, 
bear the costs of increasing the TRL of all these technologies from 1 to 9. Each project type and funding 
scheme can be considered as a filtration phase for the next one. The number and types of technologies 
decreases once the technologies move from the lab-scale to the pilot- and industrial scale. This is also 
evident in the number of projects (and their budgets) within the different funding schemes presented 
earlier. Each project is normally based on previous activities and a former project (with a smaller 
budget). For example, the EU contribution per project in its Innovation Fund is around ten times the 
contribution per project in the Horizon 2020 projects. However, the number of projects is significantly 
lower due to the need to demonstrate the technology on a larger scale. Overall, this paper highlighted 
how a technology, CCUS in this case, needs to pass through various development and innovation 
phases before it is demonstrated and approved – depending on its various degrees of costs and risks 
– and should represent a starting point for further research on CCUS developments in the cement sector 
in other regions of the world.  
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Annex 

A brief technical background on carbon capture and CCU technologies 

Amine scrubbing & Chilled ammonia 
The amine scrubbing and chilled ammonia technologies capture CO2 by chemical absorption, which is 
based on the different solubility between the CO2 and the other flue gas components. Herein, the CO2 
reacts with the solvent (e.g. monoethanolamine) and the rest of flue gas leaves the absorber. 
Afterwards, the CO2-rich solvent is sent to the desorber for heat regeneration, and the pure CO2 stream 
can then be acquired (Figure 1A). The amine scrubbing technology has a high maturity level as it has 
been already in use for decades. The technology has been used for CO2 capture from hydrogen and 
natural gas since the 1930s (Rochelle 2009). The notion of using it for capturing the CO2 from the flue 
gas has evolved in the 1970s, basically for commercial applications, i.e. Enhance Oil Recovery (EOR) 
(Fang and Zhu 2016). Some CO2-EOR projects in North America are currently supplied by CO2 
captured by Amine scrubbing from an industrial flue gas (Panja et al. 2022). However, the technology 
is costly and associated with drawbacks such as costs, high energy consumption, corrosion and 
degradation (Park et al. 2015). Variations of concept and technology are being investigated in order to 
achieve cost reductions and avoid the technical problems. 

                                         Figure 1A. Amine scrubbing carbon capture process 

                                       
 

                                     Source: based on Abu-Zahra et al. (2016); Fang and Zhu (2016) 

Oxyfuel combustion 
The combustion process is normally performed using air, which results in low concentrations of CO2 in 
the flue gas. Contrariwise, the oxyfuel technology is based on carrying out the combustion process with 
oxygen, which yields a high-concentration CO2 stream (Figure 2A). In contrast to the post-combustion 
technologies, the oxyfuel technology is an integrated technology, which necessitates some alterations 
in the cement kiln. According to (Anantharaman et al. 2018), no additional fuel consumption is needed 
after converting the kiln to oxyfuel combustion. Also, several components of the conventional cement 
plant can still be used for the retrofitted plant. The main additional components are the Air Separation 
Unit (ASU) and the auxiliary equipment needed for providing the oxygen to the burners. Also, as the 
oxyfuel technology yield a CO2 stream with a relatively low purity (Murugan et al. 2020), an additional 
compression and purification unit (CPU) would be needed (based on the required purity for 
transportation and storage) (Kolster et al. 2017). The technology is also subject to modifications and 
updates in order to improve the performance. For example, while the oxygen is normally mixed with the 
flue gas in the conventional version of the oxyfuel technology (so called first-generation), a pure oxygen 
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stream will be employed in the second-generation, which can lead to higher efficiency and cost savings 
(Volosund et al. 2021; Kroumian et al. 2021; Pikkarainen et al. 2014). 

                                                      Figure 2A. Oxyfuel combustion 

 
                                                      Source: Author’s own visualisation 

Calcium Looping 
The concept of calcium looping carbon capture is based on the chemical reactions of carbonation and 
calcination (CaCO3 <--> CaO + CO2). As shown in Figure 3A, the flue gas firstly enters the carbonation 
chamber (carbonator), where the carbon dioxide in the flue gas reacts with the calcium oxides and 
forms stable calcium carbonates (CaO + CO2 --> CaCO3) (600-700 degree) (Valverde et al. 2014). The 
treated flue gas is then released to the atmosphere and the calcium carbonates are then transferred to 
the calcination chamber (calciner) (900 degree). The calcium carbonates are then calcined to generate 
a pure carbon dioxide stream and calcium oxide, which is then transferred again to the carbonator to 
act as a CO2-sorbent. The technology can be designed in two configurations; tail-end or integrated. 
While the calciner module is integrated into the cement production process (i.e. in the main calciner 
system) in the integrated version, the tail-end configuration does not require any retrofitting as the 
technology deal with the flue gas from the kiln. However, the later configuration has a lower energy 
efficiency. Similar to the other capture technologies, different operating conditions and parameters are 
being investigated (Ortiz et al. 2015; Diego et al. 2016; Arias et al. 2017; Lena et al. 2018; Hornberger 
et al. 2021; Moreno et al. 2021). For example, some studies suggest different sorbents (e.g. dolomite), 
due to their superior performance (Perejón et al. 2016). The integration of calcium looping with oxyfuel 
combustion has been also investigated in order to capture more carbon dioxide (Arias et al. 2018; 
Anantharaman et al. 2018). 

                                                  Figure 3A. The calcium looping technology 

                                       
 

                                 Source: based on Romano et al. (2013); Lena et al. (2018); Arias et al. (2017) 
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Cryogenic Carbon Capture & Membrane-assisted CO2 Liquefaction:  
The cryogenic carbon capture is a post-combustion technology based on physical separation at low 
temperatures (Font-Palma et al. 2021). Herein, the different boiling points of the flue gas components 
are used to segregate the CO2 stream in a phase different than the other gases (liquid or solid). The 
flue gas is first pretreated and then refrigerated at very low temperatures (–100oC:–135oC). Accordingly, 
the CO2 will be transformed to the solid phase and can be separated from the flue gas (Figure 4A). The 
capture efficiency can be controlled by varying the parameters (e.g. temperature and pressure). As the 
process involves several cooling and warming cycles, the energy efficiency can be increased by using 
heat exchangers. There are various configurations and designs in the literature, each claims a superior 
performance (Liu et al. 2020; Hoeger et al. 2021; Keshavarz et al. 2019; Baxter et al. 2018; Baxter et 
al. 2009). Besides cryogenic carbon capture, membrane-assisted CO2-liquefaction is also a capture 
method that uses low temperatures and phase separation (Bouma et al. 2017). Herein, the membranes 
are firstly used to yield a CO2 stream in a moderate concentration (Baker et al. 2018). In the second 
step, a coldbox is used to cool this stream down to –54o C, which is then send to a vapour-liquid 
separator to accomplish the CO2 capture process (Anantharaman et al. 2018). 

                                                   Figure 4A. Cryogenic carbon capture 

 
Source: based on Liu et al. (2020); Hoeger et al. (2021); Keshavarz et al. (2019); Baxter et al. (2018); Baxter et 

al. (2009) 

Direct separation 
While the preceding technologies capture the CO2 from the flue gas, the concept of direct separation is 
quite unique as it is based on capturing the process CO2 before it is diluted. In order to achieve that, 
the technology is designed to carry out the calcination process indirectly in an isolated environment 
(LEILAC 2021a). As shown in Figure 5A, the calcination tube is heated from the outside surface. In the 
first version of the technology, natural gas burners have been used as an energy source. While the raw 
meal or limestone passes through the tube from top to down, the calcination process is executed via 
radiative and conductive heat transfer (Hills et al. 2017). Eventually, the calcined materials can be 
collected from the bottom and the high-concentration CO2 can be collected at the top. As the technology 
is relatively uncomplex and does not need additional energy to separate the CO2 from the flue gas, it is 
claimed to have low energy penalty, and lower OPEX and CAPEX than other carbon capture 
technologies (LEILAC 2021b). However, it should be highlighted that the technology can only capture 
the process emissions. Therefore, the rest of the emissions (i.e. fuel emissions) still need to be captured 
by other techniques. According to (LEILAC 2020), these remaining fuel emissions can be eliminated 
via electrification or using renewable fuels. An ambitious goal could be also using biomass as energy 
input along with other post-combustion capture technologies, which can result in negative emissions. 
As will be discussed later, only one pilot project has been carried out, which was an important milestone 
to address some doubts and challenges such as the steel stability and performance at high 
temperatures (approximately 1000oC) (Sceats 2017), energy consumption, process and safety 
(Winskell 2021). 
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                                                  Figure 5A. The LEILAC technology 

 
                                         Source: based on LEILAC (2021a); Hills et al. (2017) 

Carbonation & Mineralization 
Besides geological storage, some alternatives can be also used for permanent carbon sequestration. 
Carbonation and mineralization are two sequestration techniques that make use of the oxides in the 
cementitious materials and natural minerals, respectively. Similar to the calcium looping technology, 
this process is the reverse of calcination (M+O + CO2 à M+CO3). The reaction of concrete compounds 
(e.g. CSH and CAH) with CO2 in an aqueous environment results in carbonates, which are stable 
compounds (Kaliyavaradhan and Ling 2017). Similarly, natural minerals such as serpentine, olivine and 
wollastonite also contain oxides, which can react with CO2 and yield carbonates (Figure 6A) (Sanna et 
al. 2012; Gerdemann et al. 2007). Similar to the preceding technologies, the literature contains various 
versions and designs of the process (e.g. static and dynamic) (Iizuka et al. 2004; Iizuka et al. 2013; 
Zhan et al. 2013; Skocek et al. 2020). The main components are the curing chamber, where the reaction 
takes place, and some auxiliary equipment such as tanks and controllers. Herein, the CO2 sequestration 
capacity depends on the properties of the material to be carbonated (e.g. cement content and surface 
area) and the curing conditions (e.g. temperature, pressure and humidity). The described principle is 
quite analogous for the minerals, concrete waste and precast concrete, which has been so far 
investigated on lab and pilot scales. In terms of ready-mix concrete (RMC), there are already some 
industrial applications based on another concept. The technology of CarbonCure depends on adding a 
small amount of CO2 to the concrete, which result in a nano-scale carbonation. As a result, the concrete 
properties are improved and less cement is needed (Monkman and MacDonald 2017; Monkman and 
Cail 2019). Additionally, the concrete wash water is carbonated and can be added to the concrete. 
Combinedly, both effects (i.e. cement savings and CO2 sequestration) result in lower carbon footprint 
(Monkman et al. 2018; Monkman and Thomas 2021). 

                                           Figure 6A. Mineralization/carbonation process 
 

 
 

                                                        Source: based on Reddy et al. (2019) 


