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ABSTRACT

This paper examines the extent to which the use of a
fixed input in the extraction process for a nonrenewable
resource affects a number of common results in depletion
theory. A multi-deposit model is constructed where the
extraction technology requires capital equipment that is
deposit-specific and has no resale wvalue once installed.
It is shown that for each deposit there is an equilibrium
capacity level, which is built up all at once or gradually,
depending on the adjustment costs associated with
installing the equipment and the heterogeneity of deposits.
The aggregate extraction rate is constant over an initial
period of time.

The paper goes on to derive a number of results for
this model. Firstly, different quality deposits are always
exploited simultaneously, although better quality deposits
are exhausted first. Secondly, higher discount rates entail
quicker depletion only if the resource is sufficiently
scarce relative to capital equipment. Thirdly, a programme
that is optimal from a social viewpoint can in principle be
reproduced without intervention in a perfectly competitive
market. Fourthly, fiscal instruments generally discourage
investment, and consequently overconserve +the resource,
unless tax writeoff provisions or depletion allowances are
in force. Fifthly, exploitation under monopoly and
symmetrically placed Cournot-Nash producers is generally
more conservationist than the social optimum, but the
distortion 1is negligible if the number of producers is
sufficiently large. Finally, allowing for a variable input
in the extraction process or a positive rate of
depreciation for capital equipment is shown to qualify the
results by restoring the more common result that the
aggregate extraction rate is always a strictly declining
function of time.
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1. INTRODUCTION

This paper is concerned with the implications of the use of
fixed capital in the extraction process for an exhaustible
resource. Much, though not all, of the theoretical literature on
résource depletion ignores these implications by assuming either
(i) costless extraction; or (ii) a cost function that is
increasing and convex in the rate of extraction, with the
property that it costs nothing to extract nothing.

The second of these two assumptions is equivalent to the
supposition that all factors of production used in the extraction
process are costlessly and instantaneously variable (henceforth
just “wvariable” or "malleable”), and that the process exhibits
diminishing returns.! In terms of the results generated, models
incorporating this assumption do not add much beyond models of
costless extraction (the extraction rate still falls over time,
but marginal profit rather +than price grows at the rate of r
per cent), except insofar as they highlight the presence of the
interest rate in the cost function. The interest rate enters as
the opportunity cost of capital services employed in the
extraction process. As a result, a rise in the interest rate does
not, as originally argued, have a clear-cut effect on the pace of
depletion. The increased gain associated with extracting now
rather than later is offset by the increased cost occasioned by
the additional capital services needed to extract now. Which
effect outweighs the other depends, among other things, on the

size of remaining reserves. This point is discussed by Lasserre



(198%a), and especially by Farzin (1984) in the case of a
constant returns extraction technology. Farzin also demonstrates
that, 1if +there is a conventionally produced substitute for the
resource, it may Dbe +that a larger interest rate is always
associated with greater conservation, contrary to the previously
accepted result.

If, however, capital 1is non-malleable, a closer look at
decisions about factor service purchases is in order before
anything is posulated about the shape of the extraction cost
function. In this paper, it will be assumed (except in section
bA) +that +that there are no adjustment costs associated with
installing capital equipment. Instead the term ’"non-malleable”
will be taken to mean "never worth removing once installed". This
assumption - preserved throughout this paper - is Jjustified in
the absence of workable second-hand markets for the types of
capital equipment, often deposit-specific, that are used in the
extraction process. In this case, the equipment has no resale
value. Alternatively, some of the equipment may be prohibitively
costly to remove from +the site once installed. A related
possibility is that equipment can only be removed in one discrete
block once exploitation of the resource deposit has definitively
ceased.

A few authors have studied the implications of the use of
non-malleable capital equipment in the extraction process. Unless
otherwise specified, all studies cited here pertain to the
exploitation of a single deposit by a single firm. In Campbell
(1980) the firm faces a time-invariant net revenue function that

is strictly concave 1in the rate of extraction, and capacity



installation is irreversible. He shows that, in the absence of
adjustment costs, the firm picks its optimal capacity at the
outset and installs the required capital equipment
instantaneously. It then proceeds to exploit the deposit at full
capacity for an initial period of time. Over a subsequent and
final period, the firm sustains a time-decreasing rate of
extraction until its deposit is exhausted. However, Crabbé (1982)
uses the same construct to demonstrate that if the assumption of
a strictly concave net revenue function is dropped, the firm
exploits its deposit at maximum capacity up to exhaustion.
Lasserre (1985a) considers a firm with a multi-factor
diminishing returns extraction technology. He begins by showing
that, if all factors are variable (whether denominated in stock
or flow dimensions), the usual result that the extraction rate
falls over time remains valid. This is hardly surprising: the
cost function dual +to the technology is convex in the output
rate, so for given input prices the extraction problem is Jjust
the usual one. More interesting is the case where additions +to
the stock of capital equipment are irreversible, or involve
(separable) adjustment costs. In the former case, the time-
decreasing extraction result stays. Again, it is straightforward
to see why: for a given stock of the fixed factor(s), the
restricted cost function that is dual to +the +technology is
strictly convex in the extraction rate. In the latter case, the
equilibrium extraction profile may be everywhere time-decreasing
(if the inherited capital stock is "large"), or single-peaked (if

the inherited capital stock is "small” and has to be built wup



initially). Finally, Lasserre shows that if initial capacity is a
choice variable at the initial date but subseguent reductions in
it incur adjustment costs, the time-decreasing extraction result
resurfaces.

The problem of extraction where changes 1in capacity are
subject to adjustment costs has also been formulated by Gaudet
(1983). For a firm facing a constant resource price, he shows
that in general capacity is built up smoothly over an initial
phase, peaks, and is thereafter run down gradually. ©So long as
the extraction rate is positive, it is equal to capacity output,
but there may be a final phase of dismantlement when the firm’s
reserves are exhausted.

A number of the foregoing results have been derived in an
earlier paper by Jacobson and Sweeney (1980). In their construct,
a group of price-taking firms accumulate a "capital” stock in the
form of a cumulative stock of wells drilled (say W). Any increase
in W reduces the cost of extracting a given amount. This
interpretation of the "capital stock” helps to rationalize the
convex adjustment cost function associated with increases in W.Z2
Extraction costs are assumed to be linearly homogeneous in the
rate of extraction (say R) and W.

The paper shows that R/W increases (declines) whenever price
grows at a faster (slower) rate than the interest on the marginal
profit; however, R may increase even if price growth is zero or
negative. In general, W is increased on an initial phase, and R
rises alongside. R typically declines on a later phase, unless
price growth is very rapid. The paper also derives a number of

comparative dynamic results. Chief among these is that a larger



interest rate has an ambiguous effect on the initial rate of
extraction, and that a larger reserve base 1lengthens the
extraction horizon and raises the equilibrium R and R/W at each
moment in time. The paper’s weakness, however, is that it takes
the resource price and its growth rate to be exogenously
determined.

This paper adds to the work reviewed above by introducing
explicitly several distinct resource deposits, which may differ
in quality (accessibilty). To examine the case of several
different deposits seems important because, particularly where
capital is used in the extraction process, +the conditions under
which <c¢apital and resource stocks can be aggregated for the
purposes of analysis are very stringent (Blackorby and Schworn,
1980).3 In any case, an analysis of the aggregate output profile
masks the time-allocation of this output across deposits.

In addition, the analysis here endogenizes the resource
price, and thereby circumscribes its possible +time-path. The
paper also contains a number of comparative dynamic results not
previously derived for the case where non-malleable capital 1is
used in the extraction process. These include results about the
interest rate effect, tax instruments, and non-competitive
exploitation of resource deposits.

The plan of this paper is as follows: in the next section
(2) +the resource deposits are assumed to be publicly managed.
Subsection 2A poses the general problem of optimal capacity
choice and outlines the main features of the solution. Subsection

2B turns to a two-deposit example to examine these features in



greater detail. Subsection 2C uses the simplifying assumption of
identical deposits to derive some comparative dynamic results
with respect to changes in the parameters of the model.

Section 3 verifies +that, under appropriate conditions,
competitive exploitation of the resource deposits duplicates the
outcome under social management. Section 4 turns to the issue of
deviations from the optimal programme, again using the assumption
of identical deposits. Subsection 4A investigates the effects of
commonly used taxes and allowances on the competitive outcome.
Subsections 4B and 4C compare the outcome when the deposits are
exploited by a monopolist and Cournot-Nash oligopolists,
respectively, with the outcome under competition.

BSection 5 returns to the public management framework +to
investigate the effects of dispensing with three of the
simplifying assumptions in section 2. Subsection HA introduces
adjustment costs into the capacity expansion problem, subsection
5B removes the assumption that no malleable factors are used in
the extraction process, and subsection 5C introduces
depreciation. Finally, section 6 contains a few concluding

remarks.



2. CAPACITY CHOICE AND DEPLETION IN THE SOCIALLY MANAGED INDUSTRY

A, Formulation and Solution of the General Problem

This section investigates the equilibrium extraction profile
of a publicly managed exhaustible resource. The objective is to
maximize the discounted stream of consumer plus producer surplus.
The (homogeneous) reserves of the resource are assumed to be
distributed among N separate resource deposits. Deposit 1
(i=1,..,N) holds a stock of known and fixed size, Sio, at the
initial date. Production from i at date t>0 is subject to the

capacity constraint

Ri(t) £ fi (Ki(t))

where Ri denotes output from deposit (occasionally "field") i and
Ki denotes +the volume of the single non-transferable input -

capital equipment - in place there.4 The following is assumed:

(A.1) fi (Ki ) is continuous with fi (0)= 0 and continuous first and
second derivatives satisfying £i’(Ki )>0 and fi "(Ki)<0 for

Ki20, 1 = 1,...,N.

R
Now define u(R) = | p(z)dz, where p(.) denotes the inverse

Jo
demand function for the resource. Its assumed properties are:

(A.2) p(R) is continuously differentiable, unchanging over time,

and satisfies lim p(R)=z=+=,
R0

where R = ZiRi is the total resource flow. Let g denote the known



and constant market price per unit of capital equipment. The
supply of capital is assumed perfectly elastic at +this price.

Also

(A.3) Capital equipment is infinitely lived.

(this is relaxed in section 5C below) and

(A.4) The only cost associated with installing a unit of capital
egquipment 1s the purchase price (gq) for that unit. Once

installed, however, a unit has no resale value.5

Suppose for convenience that there is no capital equipment in
place at any of +the deposits at the start of +the planning
horizon. The public agency’s criterion is then +to choose

a profile {Ri(t),Ii (t)}=t=0 to maximize

rm
(1) | e-rt {u(miRi(t)) - @ Zili(t)} dt,

Jo
subject to
(2) Si(t) = -Ri (t) Si(0) = Sio given, 1lim Si (£)20;

12T

(3) Ki(t) = Ii (t), Ki(0) = O;
(4) 0 £ Ri (t) £ i (Ki (t)); and
(5 Li(t) = O
for i = 1,..,N, where 1Ii denotes investment in capital equipment

at field i, and r denotes the social rate of discount (the

"interest rate"), assumed time-invariant. Constraint (2) captures



nonreplenishability, (3) simply defines investment (using (A.3)),
and (5) rules out disinvestment.
Using standard methods, there exist continuous functions pi

and xi such that a solution satisfies, for t=0,

(6) e rtp(R) - ms =2 0, Ri £ fi(Ki) (CS) and

e~rttp(R) - pi < 0 implies Ri=0;
(7) e-rtqg = hi, Ji=0 (C8); and
(8) Mi = - {e-rtp(R) - m} fi’(Ki)

(where time-arguments have been omitted for convenience) as well
as (2), (3), pi constant, and lim »(t)=0 for i = 1,...,N. The
letters (C8) indicate thattézie inequalities hold with
complementary slackness, and 0<Ti£= is the date at which deposit
i definitively ceases production. Condition (6) states that the
deposit should be exploited at maximum capacity if the (PV)
resource price is larger than the (PV) marginal value of a unit
of stock in situ (this discounted "user cost” is constant over
time because the own rate of return on the resource 1is zero).
Conversely, nothing should be produced if the inequality is
reversed. If +the two are equal, the rate of extraction from
deposit i is indeterminate. Conditions (7) and (8) assert that if
the investment rate for deposit i is positive, it must eguate the
discounted ‘"marginal wvalue product"” stream of returns to an
incremental unit of equipment with the incremental purchase cost.
If +the purchase cost is larger, the investment rate 1is zero.

Because the Lagrangian function corresponding to (1)-(5) has been

assumed concave in the vector of control and state variables, the



set of conditions (2)-(8) with the boundary conditions on the
hi’s 1is also a set of sufficient conditions for a welfare-
maximizing extraction programme (Long and Vousden, 1977, Theorem
7).

What can be said about the solution at this level of
generality? A few characteristics can be deduced under (A.1) -
(A.4). Firstly, assumption (A.2) ensures that the resource will
not be exhausted in finite time. That is, at least one of the Ti
is infinite. Secondly, Appendix A, part (i) demonstrates that a
positive (but finite) investment rate for any deposit can only be
observed if the rate of growth of the resource price is positive.
In the special case of N identical deposits, +this does in fact
rule out intervals of positive investment altogether (that is,
any expansion must involve adding a block of capital equipment
all at once; see parts (ii) and (iii) of the Appendix). In the
case of dissimilar deposits, +the assumption that inherited
capacity in every deposit is sufficiently small can be used +to
rule out positive (finite) investment in any deposit on an
initial phase. Thirdly, any increase in Ki, i=1,..,N, in the form
of a discrete Jjump - at a jump, the rate of investment is
momentarily infinite - can only occur at the initial date +t=0.
This is due to the strict concavity of u(.) and fi(.), i=1,..,N,
and is shown in part (iii) of Appendix A.

As regards the behaviour of the resource price, the optimal
programme 1s characterized by two types of phases (see the system
of complementary equations and inequalities (6)). Consider first
a phase on which ﬁéo. Capacity expansion cannot be observed on

such a phase (recall that p>0 is a necessary condition for a

10



positive investment rate on any deposit). Together with
assumption (A.3), +this implies that capacity in every deposit
remains the same on this phase. Further, because ééO, it pays to
operate every (unexhausted) deposit at capacity. Resource
production is thus constant on this phase, so é=0 must be
observed.

Consider next a phase on which §>O. Since total output is
declining, +the rate of extraction from at least one deposit (say
J) is positive and declining at any time during this phase. But,
from (6), +this implies e rtp(R)=pj, and thus r per cent price
growth. Thus a phase on which price growth 1is positive must
automatically feature the Hotelling rule.

Next, an optimal programme cannot feature a discontinuity
in the resource price at any date. If contrary to this there is
a discontinuous increase in p at some date Td, +the value of the
programme could be increased by relocating a unit of extraction
from just before T4 to just after it. Clearly this relocation is
feasible: since output falls discontinuously at Td, some capacity
must lie idle immediately after +this date. Similarly, a
discontinuous fall in p at date T4 (a discontinuous increase in
output) means that at least one deposit was operating at less
than full capacity just prior to T4 (recall that no “bang-bang"
expansion is allowed after +the initial date). But then an
increase in the objective function is achieved by increasing
output slightly Jjust prior +to T4, which is a feasible
perturbation. These arguments hold so long as there is any

discontinuity in p at any date, so a discontinuity cannot
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characterize equilibrium, as asserted.

Finally, a phase on which all N deposits are worked at
maximum capacity - which implies a constant price (marginal
value) for the resource - cannot be preceded by a phase on which
(at least) one deposit is operated at less than capacity. Assume
that it can be, and suppose that deposit j is exploited at less
than capacity for an interval of time prior to T, and at capacity
for a period of time after 7, where T is the transition date from
one phase to the other. Then, for some time after T, the marginal
value of +the resource 1is constant, and so 1its PV must be
declining. It therefore pays to reallocate extraction to some
date Jjust before T, when the PV of marginal value is larger, so
long as there 1is spare capacity at any deposit +then. The
assertion at the beginning of the paragraph thus holds.

The following subsection analyzes the properties of
equilibrium depletion profiles in greater detail by referring to
a two-deposit example. In particular, it points out that the
optimal programme will always feature an interval of time on

which different "quality" deposits are exploited simultaneously.
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B. A Two-Deposit Example

Suppose N=2, and again let initial capacity in each of the
two deposits be "sufficiently small”. Since by assumption there
is no chokeoff price, both deposits will be exploited and
exhausted asymptotically. The argument in the previous section
tells us that a block of capital equipment will be installed in
at least one of the +two deposits at +the initial date.
Furthermore, the optimal programme will feature an initial phase
(say phase 1) on which the resource price is constant and both
deposits are operating at capacity (perhaps zero for one of the
deposits).

Since reserves are finite, phase 1 is eventually followed by
a phase (say phase 2) on which price grows at the rate of r per
cent. At every point during phase 2, output from at least one
deposit must be declining. Suppose that output from deposit 1 is
declining over (at least) the initial portion of phase 2. It is
then immediate that no further capacity expansion can ever take
place in deposit 1. This follows from the fact that e rtp=m over
a period of time. Since price can never grow by more than r per
cent, e-rtp£m at all subsequent dates. Thus Ax1=0 from the
beginning of phase 2 onwards, and additional capital egquipment in
deposit 1 is worthless.

Phase 2 may, however, feature capacity expansion in deposit

2. If it does, two conditions must be satisfied:

(i) Output from deposit 1 must be declining while +the capital

stock in deposit 2 is expanding. This implies that p2<m; that
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is, an incremental unit of stock in situ at the inital date is
more highly valued if it occurs in deposit 1. Loosely speaking,
deposit 1 can then be referred to as the better “quality"

deposit.

(ii) Phase 2 - which lasts, say, from T1 to Tz - must be followed
by a further phase (phase 3, which lasts from T2 to T3, say) on
which the resource price is constant. F¥For if phase 2 is the
final phase, then e-rtp-pm always (recall that price jumps are
not permitted), implying that e rtp>p2 always, so that it 1is
optimal +to exhaust deposit 2 at full capacity. This implies a
discontinuous increase in price at the (finite) exhaustion date,
which is a contradiction. In addition, it must be the case that

deposit 1 is exhausted at the beginning of phase 3.6

Thus if phase 2 features expansion in (at most) one deposit,
it cannot be the final phase. In fact, a sufficient condition for
the occurrence of phasé 3 is that p2<m (i.e., +that the deposits
should differ in "quality"), irrespective of whether or not
capacity in deposit 2 expands during phase 2. Only in the case
m=p2 is phase 2 the final phase. Figures 1 and 2 depict the two
possibilities. If phase 3 exists, it must of course be followed
by a final phase on which the Hotelling rule holds.

To sum up, even if the deposits differ in quality, +the
optimal programme always features an interval of simultaneous
extraction. For the better quality deposit, all capacity buildup
occurs at the initial date. Some, all, or no capacity buildup

occurs for the ‘"inferior" deposit. In the first +two cases,
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Phase 1: Both deposits operate at capacity; capacity is.non-
- zero for both deposits.

Phase 2: Output from at least one deposit declining at any
date; Hotelling rule holds.

FIGURE 1=
)
R(t)

|
|
|
| |
I | |
| | |
| | |

Phase 1 | Phase 2 | Phase 3 |
I ' | Phase 4

0 T, T, T, ’ time

Phase 1: Both deposits operate at capacity; capacity may be
zero for deposit 2.

Phase 2: Output from deposit 1 declining; Hotelling rule
holds. Capacity may expand in deposit 2.

Phase 3: Deposit 2 operates at capacity; deposit 1
exhausted.

Phase 4: Output from deposit 2 declining, Hotelling rule
holds.

FIGURE >
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simultaneous extraction occurs trivially on an initial interval
of time. In the third case, capacity in the inferior deposit
expands sometime during phase 2, when output from the Dbetter
gquality deposit is positive but declining. In this case also,
then, there is an interval of simultaneous extraction. This
result contrasts with the well-known result, where unit
extraction cost in each deposit is constant and there are no
capacity constraints, that extraction is never simultaneous and
that the better deposit is always exhausted first (Herfindahl,
1967, pp. 72-75 and Dasgupta and Heal, 1979, pp. 172-175; see
also Hartwick, 1978, for an extension to the N-deposit case, and
Solow and Wan, 1976, for an analogous result in an aggregative
model with production and consumption where the resource stock is
made up of a continuum of grades). Hartwick et al. (1986)
establish a similar proposition where a fixed setup cost must be
incurred before extraction from a given deposit can begin.

There are, however, some precedents for the simultaneous
extraction result (apart from results that rely on imperfectly
competitive market structures). Hung (1986) demonstrates that a
strictly convex extraction cost function in at least one deposit
suffices to rule out strict sequencing: an interval of
simultaneous extraction always separates phases of solitary
extraction (if any). In a somewhat different context, Ulph (1978)
shows that’if the resource stock exhibits a continuum of grades,
where grade 1is captured by the magnitude of +the (constant)
extraction cost, a phase on which different grades are exploited

simultaneously may arise. The central assumption is that, for at
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least part of the stock, a "preparation" cost has to be incurred
before a unit of the resource can be extracted. However, grades
cannot be segregated beforehand, so the prepared unit appears in
a mix of grades, and it pays to extract the proportion of +that
unit that is above a particular grade - rather than only the
minute proportion +that is of the very top grade - before
"preparing” a further unit. DeMeza and Ungern-Sternberg (1878)
demonstrate +that simultaneous extraction may arise under future
price uncertainty (high-cost owners are unwilling to bear the
risk associated with the conservation that is required of +them),
but the result does not arise under social management or if
owners have diversified portfolios (because stock market equity
is issued, for example). Finally, Kemp and Long (1980) show in an
aggregative model that if the unit cost of extraction is constant
in terms of the resource rather than utility, under certain
conditions the order in which deposits are exploited is a matter
of indifference. However Lewis (1982) shows that, if the resource
above ground can be converted into durable capital that provides
future consumption as well as into current consumption, the
result that deposits should be extracted in order of increasing
cost resurfaces.

Finally, it is worth pointing out that although in the
present context the two deposits are, over some period of time,
exploited simultaneously rather than in strict sequence, the
"higher quality"” deposit is still unmistakably identified. It is
the deposit that is exhausted first. This particular feature is
reminiscent of the sequential extraction models. Note also that

the simultaneous extraction result here does not depend on
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initial capacity in the two deposits being zero or "small". For
example, if initial capacity in both deposits is positive, then
trivially there is an initial period of simultaneous extraction.
If, on the other hand, initial capacity in deposit 1 is "large”
but initial capacity in deposit 2 is zero, then either some
capital equipment is installed in deposit 2 at the initial date,
or capacity expansion in deposit 2 takes place gradually (which
requires a positive extraction rate from deposit 1), or both. In
évery case, there is a period during which extraction from both

deposits is positive.
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C. Comparative Dynamics

To facilitate the analysis, it will be assumed for +the
remainder of this section that deposits are identical in terms of

their physical characteristics and reserves. That is:
(A.5) fi(.)=f(.) and Sio=So0, i=1,..,N.

However, though +the gqualitative substance of the results that
will shortly be derived under the auspices of (A.5) are for the
most part generally valid, the shape of the aggregate extraction
profile will not in general be as simple as suggested below.

The solution to the problem of maximizing (1) subject to (2)
- (B) is particularly simple when assumption (A.5) supplements
(A.1) - (A.4). It features instantaneous adjustment to the
desired volume of capital equipment Ki =K* in each and every
deposit at the initial date t=0. In contrast to the more common
result that the aggregate resource extraction rate 1is a
continuously declining function of time, +the programme here
consists of two phases. Over an initial interval of time (0,T)
(where, of course, T is to be determined), all fields operate at
full capacity, and total production of the resource is given by
Nf(K*). The price of the resource is constant at p{Nf (K*))
during this phase. For the subsequent and final interval (T,=)
there 1is at any date at least one deposit for which capacity is
no longer a binding constraint.? Industry output falls
continuously and price exhibits the familiar Hotelling rule: it
appreciates at the percentage rate r. The resource price 1is

continuous at all dates.
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We now proceed to characterize K¥. The PV of benefits

generated by a per-field scale of £f(K) can be written as

T [=

(12) V = 1 e-rt u(Nf(K)) dt + | e rt a(D(p(Nf(K))er(t-T}))) dt
Jo Jr

where D(.) is the inverse function of p(.). Naturally (12) is

defined subject to the resource stock constraint

r-m
(13) NSo = TNf(K) + | D(p(Nf(K))er(t-T)) dt.

Jr
(Note +that although, for t>T, total output of the resource is
given by D(p(Nf(K))er(t-T)), +the distribution of this total

across fields is indeterminate.8) K* is then simply the solution

to max {V - NgK}. It is therefore defined implicitly by
K

(14) Vk = Na
where Vk denotes the derivative of V with respect to K. From (12)

(15) Vk = (l-e-rT) p(Nf(K))Nf’(K) + {p’ (Nf(K))INE’(K)
r

rm
-r dT p(Nf(K))}e-rTp(Nf(K)) | D’ (p(Nf(K))er{t-T) )er{(t-T)dt,
dK JT

bearing in mind that T is for given S0 a function of K, as

indicated by (13).%8 Implicit differentiation of equation (13)

gives
“u
(18) dT = N{Tf’ (K)+p’ (Nf(K))f’ (K)}| er(t-T)D’ (p(Nf(K))er{(t-T) )dt}
dK AT <0
l‘m
rp(Nf(RK))1 er{t-T)D’ (p(Nf(K))er(t-T) )dt
Jr

20



Substituting (16) into (15), a little manipulation establishes
that

(17) Vk = N(1-(1+4rT)e-rT) p(Nf(K)) £’ (K).
r

Using (17) in (14), the optimal choice (K*,T*) is the

simultaneous solution of

(14°) N(1-(1+rTle-rT)) p(Nf(K))f’(K) = Naq
r
and (13). For a given extraction technology, demand conditions,

and number of deposits, the solution can be denoted K*=K(r,S0,q),
T*=T(r,50,9)). It is, moreover, easy to confirm that £"(K)<0 is
a sufficient condition for a maximizing solution.

The remainder of +this section derives some comparative
dynamic results. To begin with, from (17)
(18) 3K {Vkx + Vktr dT} = N.

3q dK
Since VKk<0, Vkr>0 (from (17)) and dT/dK<0 (from (16)), one
infers from (18) that

(19.1) 3_ K(r,S0,q) < 0; and
0q

(19.2) a_ T(r,So0,q) > O.
04

This is, of course, the expected result. A larger acquisition
cost for capital equipment reduces installed capacity. For given
deposit size, +this has the effect of lengthening the period over
which the representative deposit 1is exploited at maximum

capacity. This implies a higher resource price over an initial
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period of time and retards the pace of depletion.

Next, consider the sensitivity of the solution to the size
of reserves in the representative deposit. Implicit
differentiation of the equilibrium conditions (13) and (14’) with

respect to So yields that

B ]
fm "m
(20)| NE’ (K){T+p’ (.)1 D’ (.)er(t-T)dt} -rp(.)} D’ (.)er(t-T)dt
It Jr
N1-(1+rTie-rTH{Np’ (.)f’ (K)2+p(.)f"(K)1} rTe-rTp(.)f’ (K)
r
3K/ 350 N )
X =
3T/ 350 0

where +the argument of D’ (.) is p(Nf(K))er(t-T) and the argument
of p(.) and p’(.) is Nf(K). The terms are evaluated at the
optimal solution (K*,T¥). From the matrix equation (20) it
emerges that
(21.1) 2, K(r,S0,q) > 0, and

950
(21.2) 3 T(r,S0,q) > 0.

350
That is, installed capacity in the representative deposit is an
increasing function of its size; nonetheless this effect is not
sufficient to prevent a larger deposit being exploited at maximum
capacity over a longer period initially. But larger reserves do -
as expected - imply that the resource price p(Nf(K)) is lower on
an initial interval of time.

The following results are also used below:
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(22.1) 1lim T(r,S0,q) = +=; and
So 2=
(22.2) 1im T(r,S0,q) = 0

S0 +0

for r,q>0. To verify this, suppose to the contrary that T is
bounded above by a finite number T>0 as S0 becomes arbitrarily
large. Fix T=T and define K=K such that (E,E) solves (14°) for
given r and q. Clearly K is finite if T is. But then the right-
hand side of (13) is finite, so reserves are not fully used up
and this contradicts optimality. Similarly, if T>0 denotes a
lower bound that T approaches as reserves are shrunk to zero,
define K>0 such that (K,T) solves (14’). But then the right-hand
side of (13) is positive, implying, contrary to the initial
supposition, that reserves are positive.

It can be verified similarly that the limit conditions

(23.1) 1lim T(r,S0,q) = +=; and
q*=
(23.2) 1lim T(xr,S0,q) = 0

qa*0
for r,S0>0, are satisfied. The function T(r,S0,q) thus has the
general shape depicted in Figure 4.

More interesting is the question of the sensitivity of
installed capacity (and consequently the rate of depletion) in
the representative field to the rate of interest. Propositions 1
and 2 assert that the sign of this depends on the values of 5o
and gq. The method of proof is the same for the two propositions
(except where indicated), so the two are verified simultaneously.
The following definition is used here: for any pair of depletion

profiles (say 1 and 2) that begin with the same reserves at the
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T(r,SO,q) T(rlso,q)

GU 4 : I1GU 4.

initial date, profile i is said to be gtrongly more (less)
conservationist than profile 2 if after the initial date,
reserves are larger (smaller) at all dates on profile 1 than on
profile 2. Profile 1 1is said to be weakly more (less)
conservationist than profile 2 if, after the initiél date,
remaining reserves are larger (smaller) for an initial interval

of time on profile 1 than on profile 2. Then:

Proposition 1 For given values of r and q, there exists a
critical deposit size So*>0 such that 3K/3r > (<)(=) 0 if and
only if So < (>)(=)So*. For So<So*, a 1arger interest rate
implies a strongly less conservationist depletion policy.
Conversely, for So>So*, a larger interest rate results in greater

conservation, but only in the weak sense.

Proposition 2 For given values of r and So, there exists a

critical value of the purchase price for capital equipment, say
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g*, such that 3K/or > (=)(<) 0 if and only if ag< (=)(>)g*. For
Q<g¥*, a larger interest rate implies a strongly less
conservationist depletion policy. However, for q>q*; a larger
interest rate results in greater conservation, but only in the

weak sense.

Proof From the equilibrium condition (14),
3 K(r,S0,q9) = -Vkr (VkKK + VkTdT)-1

3r dK

and since the term in parentheses on the right-hand side 1is

negative,
sign (8K) = sign (Vxr).
ar

But, using (17),

Vkr = - N {1 - (1+rT+(rT)2)e-rT} p(Nf(K))f’ (K)
: r2

where this derivative is evaluated at (K*,T*). While its sign is
invariant to the value of K*, it does depend on the value of T*,
because T* determines the sign of the term in curly brackets (see

Figure b5). For T*<Te, Vkr is positive, and the converse for

T*>Te .

exp(rT) 2
1+rT+(xrT)
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Now recall (Figure 4) that T* is everywhere increasing in So
for given r and q, and everywhere increasing in q for given r and
So. Further, by (22), it is always possible to find some small
(large) enough So such that T*< (>) Te, with equality occuring at
only one value of S0, given the values of r and q. Similarly (by
(23) in the case of q.

It remains to establish the results about the pace of
depletion. First, choose ©So and g such that T*<Te, and thus
3K/3r>0, and consider a small increase in the rate of interest
from r1 to rz2. Figure 6.1 illustrates the effect of this on the
price path. Over the initial capacity constrained phase (which
may be longer or shorter than before), price is now lower. But
price grows faster (at rz2 versus ri1 per cent) over the later
phase. It is clear that, up to the date T’ at which the profiles
intersect, cumulative depletion is greater (and so the remaining
stock smaller) on profile 2 than on profile 1. Moreover, for t>T°
D(p2 (t))<D(p! (t));therefore

f= f=
NSz (t) = | D(p2(T))dT < | D(p! (T))dT = N3I (t).

it Jt
That is, a small increase in the interest rate makes the
depletion programme strongly less conservationist, as asserted.

Finally, choose S0 and q such that T>Te, or 3K/3r<0.
Consider again a small increase in the interest rate from r1 to
r2. Figure 6.2 shows the effect on the price path. Clearly
profile 2 must intersect profile 1 at least once (at date T’'’).
Otherwise +total sales over time would be less along prefile 2.

Since p2 eventually rises at a higher percentage rate than p! (rz
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versus ri) the paths must cross again at some date T’’°. For

téT) 3

[t ft

I D(p2(7))dT < | D(p!(T))drT,
Jo Jo

so +that profile 2 has larger remaining reserves than profile 1.

On the other hand, for t>T’’’7,

f= f=
NS2(t) = | D(p2(7))dT < | D(p!(7))dT = NBI (%),
ht Jt
so it is profile 1 that has the larger remaining reserves. Thus,

in this case, a small increase in the interest rate implies

greater conservation, but only in the weak sense. o

Roughly speaking, the result in propositions 1 and 2 can be
rationalized as follows: A higher interest rate means, gcet. par.,
that the net benefit stream should be tilted towards earlier
dates. Where extraction is costless - or does not require capital
- this simply means that more of the resource should be extracted
early in the programme. To do this here requires that additional
capacity be built up, which is costly. The gain from increasing
resource use in earlier periods must therefore be balanced
against the loss associated with the capacity increase that this
requires.

If +the resource is sufficiently scarce relative to capital
{(where the scarcity of the resource is captured by the size of So

and capital by the magnitude of gq), and therefore comparatively
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highly valued, the gain outweighs the loss. A larger capacity is
chosen, and more of the resource is extracted initially. On the
other hand, if the resource is very abundant relative to capital,
the loss exceeds the gain and it pays on the contrary to pick a

smaller level of capacity, so less of the resource is used up

initially.

29



3. EQUILIBRIUM UNDER COMPETITIVE EXPLOITATION

This section verifies +that the optimal allcocation and
capacity buildup under social management can be reproduced -
under suitable assumptions - if +the resource deposits are
competitively exploited. Though perhaps obvious, this result is
worth demonstrating; it emphasizes that the installation costs,
although they are borne at the outset, are not fixed costs in the
sense that they give rise to non-convexities. By contrast,
Hartwick et al. (1986) show that, if a fixed setup cost has to be
incurred before a given deposit can be exploited (but there is no
upper bound on the extraction rate thereafter), a competitive
equilibrium fails, in general, to sustain the optimal extraction
programme.

Assume then that each of the N deposits is unitized!® and
controlled by a price-taking operator. Assume also that the
market rate of interest correctly reflects the social rate of

discount. The following assumption is also used:

(A.6) There 1is a complete set of forward markets in which all
future +transactions in the resource are concluded at the

initial date.l1

Under these circumstances, given the equilibrium resource
price +trajectory {p(t)}=t=o0, the operator with the rights to
deposit i will choose an investment and extraction policy +to
maximize

f=

(24) .!i e-rt {p(t)Ri (t) - qli (t)} dt
0
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subject to constraints (2)-(5). It is easily checked that a
solution that maximizes (24) must satisfy (6)-(8) (with pmi, the
multiplier function corresponding to the resource stock
constraint (2), constant over time) as well as (2)-(5) and the
boundary condition on hi. For each individual firm, the resource
price is parametric, but of course in the aggregate p(t) =
p(LZiRi (t)) at date t.

The set of conditions that characterize a competitive
equilibrium is therefore +the same as the one under social
management. An optimal programme can thus in principle be
decentralized.l2

In the case of identical deposits (assumption (A.b5)), all
are exploited at the (same) maximum rate on an initial interval
of time (0,T). On (T,=), industry output declines so that the
resource price increases at the rate of r per cent. The firm
exploiting deposit i therefore chooses Ki* as the solution to

(25) max {(l-e-rT) p £f(Ki) + e-rT P Si(T) - qKi } ,
Ki r

where
(26) Si(T) = Bo - Tf(Ki),

treating E and T as parametric. Using (26) in (25), the solution
Ki* = K¥ is seen to be independent of 1i. Thus E = p(Nf(K*)) and

the equation defining K¥ is precisely (14°):

(14°) (1 - (1+rT)e-rT) p(Nf(K))f’(K) = q.
r
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This 1is referred +to frequently in the next section as the
benchmark condition for capacity choice, relative +to which
distortions are assessed.

Finally, every deposit is exploited at maximum capacity
until at least date T. After T, operators are indifferent about
how the extraction of reserves that remain in their deposits
should be spread out over time, and the allocation of +total

production across fields is not determinate.l3
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4. DISTORTIONS FROM THE OPTIMAL PROGRAMME

This section deals with sources of bias from +the social
optimum (or perfectly competitive equilibrium). The first
subsection examines the distortions attributable to commonly used
tax instruments. The second and third subsections deal with the
implications of removing the assumption of competitive
extraction. To fix ideas, both assumption (A.5) (identical
deposits) and assumption (A.6) (forward +transactions) are

retained throughout this section.

A. T struments d their Effects

Much of the literature that deals with the effects of taxes
on the pace of depletion uses the assumption that the (variable)
unit cost of extraction is constant (Dasgupta and Heal, 1979, Ch.
12; Dasgupta, Heal and Stiglitz, 1980; Conrad and Hool, 1981).
Other work has incorporated more general cost conditions (Heaps,
1985; Gaudet and Lasserre, 1983), and arrives at broadly similar
results about the bias introduced by various taxes. A number of
these results can also be confirmed in the present context of
irreversible capacity buildup.

For convenience, +the usual technique of dealing piecemeal
with the effects of different fiscal instruments is adopted here.
The method will be to gauge the effect of each on a competitive
operator’s capacity choice.14

A tax on operating profits. It is well known that, where no

fixed factors are used in the extraction process and the tax rate
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is +time-invariant, +this tax is equivalent to a rent tax and is
therefore neutral. That is, it preserves the tax-free
equilibrium (Dasgupta, Heal and Stiglitz, 1980). However, in the
present case, it induces a distortion in the form of
overconservation. To see this, consider the benchmark eguation
for capacity choice (14’). An operating profits tax at rate

0<7<1 changes the equilibrium condition to
(27) (1-v)(1-(1+xT)erT)p(NE(K))E’ (K) = q,

and it is clear that the solution of (27), say K’, satisfies
K’<K* (in view of (16), T is a decreasing function of K, and
K’2K* with T’<T* would violate equation (27)). The tax therefore
reduces total production of the resource on an initial interval.
In fact, the taxed equilibrium is strongly more conservationist
than the untaxed one.15 The larger the tax rate, the greater 1is
the magnitude of overconservation.

A tax writeoff provision for capacity installation costs. A
profile on which operating profits are taxed can, however, be
kept neutral. This requires a provision that permits operators to
offset immediately all capital expenditures against tax
liability, and is equivalent to subsidizing all such expenditures
at +the same rate as the per-unit tax on operating profit. To
clarify the equivalence, note that capital costs incurred in the
exploitation of deposit i at the initial date (gKi ) can also be
expressed as a perpetual stream to the amount rgKi at each date
(interest payments or forgone interest). The writeoff provision
makes the effective installation cost (1-v)qKi, and the

equilibrium condition for capacity choice in deposit i coincides
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with the benchmark case.16

A revenue depletion allowance. A depletion allowance is a
provision that allows the operator to deduct a certain amount
from +taxable income to compensate for the reduction in reserves
that current production from the deposit entails. The allowance
may be of the per-unit output type (see below), or it may permit
the operator +to deduct a given proportion # (0<#<1) of current
revenue. Suppose the latter is combined with a time-invariant
rent tax at rate v. In this case, net returns to extraction from

deposit 1 at any given date t are

(28) {p(t)Ri(t) - rgKi) -v(p(t)Ri(t) - rqKi - #p(t)Ri (L)}

= (1-7) {p(tIRi (L) (1 + %ﬂ ) - raKi}.
-Y

The net present value of the deposit is then

T -
(1-v){| ert (pf(Ki)( 1 + x# ) - rqKi) dt
Jo 1-v
f= -
+ | ert (per{t-T)Ri(t)( 1 + x#¢ ) - rqKi) dt}
Jr 1-v

= (1-v) {1-(1+rT)e-rT)( 1 + 1 )pf(Ki) - qKi + e-rTp(l-71#)S0},
1-v 1-¥

where 5=p(Nf(K)) is the equilibrium price on (0,T). Note that the
r per cent rule is satisfied for t>T, because per-unit operating
profit - the present value of which needs to‘ be constant in
equilibrium - is proportional to the resource price. Here the

choice of Ki solves
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(29) (1-(1+rT)e-rT) (1 + Iljg) pf’(Ki) = a.
-4

Compare (29) with (27). It is clear that the depletion allowance
is equivalent to a negative operating profits tax. It therefore
induces overinvestment and (strong) underconservation. From
(29), it is easy to verify that for the depletion allowance to be
neutral, it must be applied to operating profit less "current"”
capital costs, rgKi.

A severance tax. This is equivalent to a fixed fee per unit
of the resource extracted. Denote this fee by <. Then the
operating profits of deposit i at date t+ are {p(t)-*}Ri (t).

Now recall that T has been defined such that on (T,=)
operators are indifferent about exactly when to extract. It then

follows that the no-arbitrage condition
(30) e rT {p(Nf(Ki)) - v} = e-rt(p(t) - ¥)

must hold for t>T. Using this fact, the present discounted value

.of deposit i is given by
(31) (l-e-rT) {p(Nf(Ki)) - v} £(Ki)
Y
+ e rT{p(NFf(Ki)) - v} Si(T) - gKi.

Substituting for Si(T) from (26), and maximizing (31) with

respect to Ki (but taking E(Nf(Ki)) and T as given) yields that
(32) (1“(1+rT)e'fT){5(Nf(Ki)) -7} £7(Ki) = q.

Now (32) must imply a smaller value of Ki, say Ki", than

Ki*, the solution to (25) where there is no +tax in place.
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Suppose instead that Ki" = Ki*, Then we must have T" < T¥%;
otherwise the resource price would be at least as low along the

taxed equilibrium as along the no-tax equilibrium, and strictly

lower beyond a certain date. This is so because, from (30), p"
rises at less than r per cent after T". p*, on the other hand,
rises at the rate of r per cent after T*. So if Ki" = Kjix*,

implying that p" ¢ p* at the initial date, and T" < T*, total
extraction is greater on the taxed profile than on the no-tax
profile. Since total reserves are the same in both cases, this
is a contradiction.

Going back to (32), it can now be noted that if Ki* and T*
solve (32) when ¥ = 0, then Ki" and T" with Ki" = Ki* and T" <
T* cannot solve (32) when ¥ > 0. In short, Ki" < Ki*, and the
presence of a severance tax at rate i brings about
overconservation 1in the strong sense.

An output depletion allowance. This is a provision that
allows the operator to deduct a fixed amount (denoted by #) per
unit of the resource extracted from taxable income. Suppose then
that this provision is combined with a time-invariant rent tax at
rate ¥. Rent captured by the operator from deposit i at date t is

given by
(P(E)Ri () - raKi) - v{p(t)Ri(t) - raKi - #Ri (£)}

= (1-r){(p(t) + %E)Ri(t) - rqKi }.
-Y

This dindicates that the effect of the depletion allowance 1is

eguivalent to that 6f a negative severance tax. Accordingly, an
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argument exactly symmetric to the one used above can be adduced
to show +that the profile is strongly less conservationist than
the benchmark profile. Price grows at a rate larger than r after

at least one deposit ceases to operate at maximum capacity.17

To conclude this subsection, two points are in order. The
first is that even if a tax does not affect the rate of price
increase (r per cent) that prevails when the capacity constraint
no longer bites, as in the case of the operating profit tax, it
will still distort the extraction profile unless appropriate
allowance is made for capital expenditure to be written off
against tax. The second point is related: if an operating profits

tax is 1imposed on operators after they have installed all +the

capital equipment (on the assumption that no such tax - or a
lower rate - would obtain), then, unlike a severance tax, it
would not distort the depletion profile. 0Of course, to the
extent +that deposits are located, developed and exploited in
overlapping sequence rather than simultaneously, springing
operating profit taxes on current fields inhibits the development
of new ones if operators anticipate that this will recur in the

future.18
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B. Monoroly

This subsection considers the distortions inherent to
monopoly. To focus on these alone, +the assumption is retained
that there 1is a complete set of forward markets at the initial
date (assumption (A.6)). For the monopolist in control of N
resource deposits who seeks to maximize the present wvalue of
profits, necessary and sufficient conditions for a maximum
{analogously with conditions (2)-(8) and the boundary conditions

on the »i’s) are

(33) e rt{p’(R)LiRi + p(R)} = i, Ri =f(Ki) (C8)
and e rt{p’(R)YiRi + p(R)} < i implies Ri =0;

(34) e rtqg = ki, Ii=0 (C8); and

(35) \i = - {ert(p’(R)LiR: + p(R)) - mi 3’ (Ki),

and (2)-(5), with pi constant for +t=0 and 1lim xi (£)=0,
i=1,..,N.18 (C8) denotes that the inequalitiesté£;1d with
complementary slackness. Recall also that R = &iRi. Arguments
along the lines of those used in Appendix A can be used to show
that, for each deposit, capacity installation is instantaneous at
+=0 and remains unchanged thereafter. Moreover, under assumption
(A.5), equilibrium capacity is precisely the same in every
deposit.

The story is much the same as previously: for an initial
period (0,T) all deposits are exploited at maximum capacity. On

(T,=) there is at least one deposit for which output is positive

but below capacity at any given date. Aggregate extraction 1is
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adjusted so that marginal revenue to the monopolist appreciates
at rate r (see (33) with Ri<f(Ki)). The resource price is
continuous at all dates.

How does the monopolist’s capacity choice differ from that
of the competitive industry, and what is the effect on the pace
of resource use? As might be expected, the answer depends,
ceteris paribus, on the properties of the demand function.
Specifically, it depends on the behaviour of the elasticity of
demand, here denoted by h(R)=p(R)/p’ (R)R. To ensure a positive
level of output, it is necessary to assume that h(R)<-1.20 It
will prove useful to isolate three prototype cases for analysis:
(1) "W’ (R)=0; (ii) "’ (R)<0; and (iii) hW’(R)>0, in each case over
the entire equilibrium range of output. Each of the three cases
is treated in turn.

S iy: n’ =0. The isoelastic case is the simplest +to
analyze. It is also a benchmark case in that, where there are no
variable (or fixed) costs of extraction, the monopoly equilibrium

is distortion-free (Stiglitz, 1976, and Dasgupta and Heal, 1979,

pp. 325-7). That the elasticity is constant 1implies that
marginal revenue, ©p(l+l/M), 1is proportional to +the resource
price. Since for t=T marginal revenue grows at the percentage

rate r, so does price. The discounted revenue stream accruing to

the monopolist is then given by

T
(36) VM = | e rtp(Nf(K))Nf(K)dt
Jo
rm
+ e rTp(Nf(K))1 D(p(Nf(K))er(t-T))dt
iT

40



where D(.) is the inverse function of p(.). (36) is subject to

the reserves constraint

rm
(37) NSo = NTf(K) + | D(p(Nf(K))er(t-T)dt
Jr

Using (37) in (38), the latter becomes

+(367) V™ = N [p(NEf(KYI£(KI(1-(1+rT)e-rT) + e rTp(Nf(K))So]
r

I+t is now straightforward, albeit somewhat laborious (see
Appendix B, part (i)) to establish that the derivative of (36’)

with respect to K reads simply

(38) VM = N [(1 - (1+rT)e-rT) p(Nf(K))f’(K) (1+1)]
r n

Thus, for given K, VMg<V*Kk (see equation (14’)), where the
superscripts refer +to the outcomes under monopoly (or cartel)
management and social management (or competitive exploitation)
respectively. Since both VMg and V¥x are equated with Ng and
moreover VMkk,V*kk<0, it follows that KM < K*.

Figure 7 compares the time-path of prices sustained by the
monopolist with the competitive path. It is immediate that
pM(TM) < p*(TM), where TM is the date after which price begins to
grow at the rate of r per cent under monopely. Failing this, at
least one of the profiles would violate +the stock exhaustion
condition (37) (note that (37) is identical to (13)). Strong
overconservation under monopoly can be shown using an argument

symmetric to the one for propositions 1 and 2, section 2C.
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The result 1is summarized in proposition 3:

Proposition 3 Under isocelastic demand, a monopolist exploits its
resource deposits at suboptimal scale (from a social viewpoint).
Over an initial interval of time the resource is overpriced, and

the resource stock is strongly overconserved.

The result is not, on reflection, surprising. It is +true
that all costs are fixed costs (“"up front" irrecoverable costs as
opposed to “"quasi-fixed" costs that are incurred per period only
so long as output is positive). Under isoelastic demand, these
would not in themselves be expected to introduce a wedge between
the monopoly and competitive extraction paths.21 But here an
increment in fixed ‘costs is the cost of purchasing a unit of
capital at the outset. In equilibrium, this is equated with the

return to an increment in scale. The latter is, loosely
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speaking, proportional to the return from the sale of a small
unit of output at the initial date, when output from each deposit
is capacity constrained. For a given scale of operation (hence a
given resource price) marginal revenue lies below price, so the
return to the sale of this incremental unit is less for the
monopolist than for the competitive supplier. The monopolist
therefore stops short of the competitive scale of operation.

Case (ii): n’(R)<0. This is the case where the elasticity of
demand increases in absolute value as output of the resource
increases. Dasgupta and Heal (1979, pp. 327-8) and Lewis et al.
(1979) argue that this case is plausible and may arise if a
larger equilibrium output (and lower price) means that the
resource comes to be used in industries that can easily switch
back to substitute inputs. "Marginal" demand thus dissipates very
quickly with even a small increase in price.

From the optimality condition (33), if there is at least one
deposit for which capacity is not fully employed,
e-rtp(R)(1+1/n(R)) must be constant over time (recall that R>0
always because there is no chokeoff price). Time-differentiating
and rearranging (33) then gives

P - __ W (RR - r,
p N(R) (1+R(R))

implying (since ﬁ < 0) that the monopolist wishes to sustain §>rp
for t>T when the capacity constraint no longer bites. But unless
the resource 1is instantly perishable, or its storage costs -
except in the ground - prohibitive, such a price trajectory

cannot support asset market equilibrium. Everybody would attempt

43



to buy up stocks of the resource, because the resource now yields
a higher return than the numeraire asset does. In short, the
monopolist faces the constraint that ﬁ/pér at all dates.

Thus for t>T the constraint bites and price grows at the
rate of r per cent. So (36’) measures the present value of
revenue accruing to the monopolist. As shown in Appendix B, part
(ii), the derivative of (36’) with respect to K in the case where
n’(R)<0 is given by

(39) VMg = N [(1-(1+rT)e-rT) p(NFf(K))Ff’(K)
r

+ {l-erT( 1 + xT )} p(NF(KNF'(K)] ,
G(T) r n(Nf(K))

rm
where 0 < G(T) = | W(D(p(Nf(K))er(t-T)))ID(p(Nf(K))er(t-T))dt < 1
JT
fm
R(NEf(K))1 D(p(Nf(K))er(t-T))dt
JT
and, in equilibrium, KM solves VMK = Ng. Again using equation

(14’), it transpires that for given K, VMk 2 V*x if and only if
erT £ 1+rT/G(T).

In sum, the direction of bias for the case Nn’ (R)<0 depends
on the magnitude of G(T). Suppose for example that G(T) is
sufficiently below unity (that is, h(R) rises - or the elasticity
falls in absolute value - at a sufficiently fast rate as output
declines during the final interval (T,=)). Then it is possible
that, for given K, VMk>V*k. Since both are equated with Ng in
equilibrium, and both are decreasing functions of K, KM > K*.
Per-field capacity choice is greater under monopoly than under

competition. It follows +that monopoly extraction is overly
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profligate in the strong sense.

Conversely, if G(T) is close to unity, VMx < V*x and the
reverse applies. What is interesting, though, 1is that in the
present context monopoly can in principle be associated with
excessive (strong) profligacy, even if speculative purchases and
storage of the resource are feasible. B8peculation prevents
excessively rapid depletion in the costless extraction model,
because it thwarts the more rapid price growth that is required
to tilt the production schedule in favour of earlier periods (see
Dasgupta and Heal, 1979, pp. 328-31). In the present case, of
course, extraction is simply tilted in favour of the present
through a slightly larger initial capacity buildup.

Case (iii): "’ (R)>0. Here demand is assumed to become more

elastic (that 1is, " declines) as the size of the market
contracts. Dasgupta and Heal (1979, p.328) state the case for
this:
..... as the price 1is raised, +this increases the
incentive +to invent substitutes that did not previously
exist, or to proceed with development work on potential
substitutes whose development has been held in abeyance
while the resource price was low.
Where extraction 1s costless, the case n’(R)>0 is
associated with (strong) overconservation. It is straightforward
to establish +that this is so in this context +too. Denote

marginal revenue, evaluated at R>0, by m(R)=p(R)(1+1/h(R)).

Differentiating this gives

m’ (R) = p’ (R)(1+1/N(R)) - p(R) (R)/M(R)2.

Since N (R)>0, m’(R)<0 over the output range under consideration,
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and m(.) may therefore be inverted.22 Let n(.) be its inverse.

Now for t=T,23
(40) m(R(t)) = er(t-T) m(Nf(K))

that is, the percentage growth rate of marginal revenue is r.
This follows from (33) and the fact that, by definition, at least
one deposit is no longer exploited at maximum capacity after T.
(40) then implies that, for t=T, R(t) = n(m(Nf(K))er(t-T)), so
that p(R(t)) = p(n(m(Nf(K))er(t-T))). Thus the present value of

revenue received by the monopolist can be written

(41) VM = (l-e-rT) p(Nf(K)INFf(K)
r

rm
+ | ertp(n(m(Nf{K))er{(t-T) ) )In{m(Nf(K))er(t-T) }dt.
Jr )
(41) is of course defined subject +to the resource stock
constraint
rm
(42) NSo = NTf(K) + | n(m(Nf(K))er(t-T))dt.
Ir
The derivative of (41) with respect to K - treating T as an
implicit function of K given by (42) - is somewhat lengthy to

compute. The steps are given in Appendix B, part (iii) and +the

derivative is

(43) VMg = N {(1-(1+xrT)e-rT)f’ (KIm(Nf(K)) + e rTp(Nf(K))f(K)dT}.
r dK
The solution (KM,TM) here solves VMx=Ng and (42). To compare KM
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and K*, recall that (K*,T*) is the solution to equations (14’)
and (13).

Suppose first that KM=K*. Then from the resource stock
constraints (42) and (13), it is clear that TM<T*. That is, the
resource price must begin to rise earlier under the present case
than under competition. This is because price here grows at less
than r per cent, so if it begins its growth no earlier than in
the competitive case, it remains under the competitive price in
perpetuity after ™. Cumulative sales are consequently larger
than under competitive exploitation. Since total reserves are the
same in each case, either the competitive extraction profile
violates (13) or the monopoly profile contradicts (42).

Now since TM(T*,
1-(1+rT™)exp(-r™) < 1-(1+rT*)exp(-rT*),

and also m(Nf(K))<p(Nf(K)) and dT/dK<0. ©So for K*¥=KM one infers
from (43) and (14’) that VMk<V*k. Since each of these must be
equated with Ng, KM must be lowered below K* a little to raise
VMg and equate it with V*¥k. Thus KM<K*,

In the case n’(R)>0, then, the resource is unambiguously
overpriced for an initial period of time, but underpriced later
in the programme. It is easy to show that this implies a more
conservationist depletion programme (in the strong sense) than
under social management.

The results for cases (ii) and (iii) are summarized in

proposition 4:
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Proposition 4 Where N’ (R)>0 over the relevant range of the
demand curve, a monopolist builds up too little capacity, and the
resource 1is overconserved in the strong sense. However, where
n’(R)<0 over the relevant range, the direction of bias is in
general indeterminate, but the possibility does arise that the
monopolist will overinvest in capacity and underconserve in the

strong sense.

Finally - as 1is more likely to be the case - where the
behaviour of the elasticity of demand is a hybrid of the three
prototype cases considered above, little can be said in general
about the direction of bias. The preceding analysis does,
however, give an indication of the various forces that operate.
The direction of bias on the whole inclines towards excessive

conservation.
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C. Symmetrically Placed Oligopolists: the Cournot-Nash Solution

Pure monopoly and perfect competition are polar cases that
seldom find application in practice. It is useful, therefore, to
have some idea of the properties of equilibrium in "intermediate”
market structures. A number of authors have tackled this problem
in the context of exhaustible resource extraction. Their work
tends to concentrate on two types of conjectural structure: Nash-
Cournot quantity setting and Stackelberg leader-follower
structures.24

In the latter case, a dominant supplier of the resource
coexists with a fringe group that also supplies the resource or a
conventionally produced substitute. The dominant supplier
optimizes by dictating a price trajectory that already
incorporates +the (passive) fringe’s known supply response. This
class of problems has been treated by, among others, Gilbert
(1978), Ulph and Folie (1981), Newbery (1981) and Stiglitz and
Dasgupta (1982, section 6). Among the interesting results to
emerge from this work, two in particular deserve mention. One is
that the "limited competition” in +this framework does not
necessarily imply an outcome that lies "between” +the outcomes
under monopoly and competition. For example, +the resource may be
overpriced initially relative even to the pure monopoly
equilibrium, which already overprices the resource vis-a-vis the
competitive case.

A second result is that in general it pays the leader +to
announce an initial strategy which there is an incentive later to

deviate from. This arises essentially because the process of
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extraction constitutes an irreversible diminution of stock. Once
the fringe has been coaxed into extracting its entire stock, any
source of competition disappears; so there is an incentive for
the dominant supplier to engineer +this through a fake
announcement. The story 1is then carried a step further: the
fringe recognizes the dominant supplier’s incentive to fool it,
and - in the absence of a commitment vehicle - assumes that it
will do so, and responds accordingly. The appropriate equilibrium
concept thus becomes one in which the equilibrium is computed
recursively - a "subgame perfect" equilibrium - and differs
substantially from a precommitment equilibrium.25

Because in the present context it is not only extraction but
also the decision about capacity buildup that is irreversible,
the problem of dynamic inconsistency would undoubtedly surface in
a leader-follower problem. However, the lack of symmetry in the
equilibrium would also appear to make its characterization
difficult 1in the present context. For this reason the symmetric
Cournot-Nash equilibrium is characterized instead.

Among the analyses of the precommitment (or open-loop)
version of the Cournot-Nash equlibrium in the resource extraction
context is that of Lewis and Schmalensee (1980). They show in
- particular that, in the case of identical (and constant) wunit
cost and reserve conditions, the larger the number of firms, the
quicker +the resource is used up (see also Dasgupta and Heal,
1978, pp. 336-40). Loury (1986) considers the case of identical
constant unit costs but different reserves across firms, and
demonstrates that if reserve differences are not too large (so

that all firms exhaust together), +the resulting extraction path
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maximizes a weighted average of profits and social surplus. From
this he is able to show that +the open-loop Nash-Cournot
equilibrium is strongly overconservationist, with the extent of
overconservation non-decreasing in +the number of operators.

In a paper by Ulph and Folie (1980), a cartelized group of
firms who behave as a Nash-Cournot player share the market with a
price-taking fringe group. For the linear demand and extraction
cost case, Ulph and Folie assume that the cartel has a
significantly lower unit cost than the fringe. They prove that in
this case the discounted profits of the fringe are lower than
they would be under ubiquitous competition, and argue that their
results extend to the convex costs case. This shows that Salant’s
(1976) result that a fringe group 1is better off under
cartelization if cost and reserves conditions are uniform is not
generally wvalid. In a slightly different context, ©Stiglitz and
Dasgupta (1982, section 7) consider a duopoly equilibrium where
one firm supplies +the resource and the other (potentially) a
conventionally produced substitute. Interestingly, they derive
the novel proposition that in general an interval of simultaneous
supply obtains. Usually the backstop is held in abeyance until
the resource is depleted.

The question, however, 1is whether in the Cournot-Nash case
the open-loop solution technique is seriously misleading in the
absence of a vehicle - binding forward contracts, for example -
whereby firms can commit themselves to an announced extraction
policy for some period of time (the commitment period). For a

common property resource, Reinganum and Stokey (1985) demonstrate
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that the answer is a definite "yes". Using a costless extraction
and isoelastic demand framework, they parametrize the length of
the commitment period and show that the speed of extraction is a
declining function of it. Moreover the resource stock is used up
arbitrarily fast as the length of the commitment period tends to
zero. This is an intuitively appealing result, but it appears to
be a direct result of the common property assumption. Eswaran and
Lewis (1985) find that under private ownership, open-loop and
recursive solutions coincide in simple cases (such as isoelastic
demand and costless extraction for all firms), and appear to be
remarkably close in other cases. Though by no means conclusive,
their results suggest that the problem of dynamic inconsistency
may not be a serious one in the private ownership Cournot-Nash
case, and provide some justification for restricting attention
here to the open-loop solution concept.

To proceed: each firm is assumed for convenience to have the
exclusive right to one deposit. N therefore denotes the number of
operators as well as the number of deposits. Deposits are assumed
identical (assumption (A.5)). Each operator is a PV profit
maximizer and plans its entire time-profile of extraction at the
initial date, taking the extraction policies of other firms as
given. Firm i’s choice {Ri (t),Ii (£)}=t=0 must therefore satisfy
the following conditions:

(44) e rt[p’ (L Rj(£)+Ri (£))Ri (¥) + P(E Ri (£)+Ri (£))] = ni,

J#i J#¥i
O<Ri (t)=£(Ki (t)) (C8)

and e-rt[p’ (L Rj(t)+Ri (£))Ri () + B(E Rj (£)+Ri (t))] < m
i 3#i
implies Ri (t)=0;
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(45) e rtg = ki (t), Ii (£)=20 (CS);

(46) 2i (t) = - {e-rt[p’ (5 R;j (t)+Ri (£))Ri (%)
=i
+ p(& ﬁi(t)+Ri(t))] - m} £7(Ki (b))
31

rm
(47) 1 Ri (t)dt = So

do
(48) Ki (t) = Ii (t); Ki (0)=0
where pi is constant, i=1,..,N. A bar above a variable indicates
its assumed constancy to firm i under its conjectures. (44)

states that the operator should produce at maximum capacity if
the revenue from the sale of an incremental unit exceeds the user
cost of the resource, and should produce nothing if it is less.
If the two are equal, the operator is indifferent about its
output rate. Similarly, (45) states that it is worth adding +to
the capital stock if the stream of discounted returns to doing so
exceeds the purchase cost, and (46) states that each component of
the stream 1is the net marginal revenue product of capital.
Finally, (47) just says that firm i’s reserves will be used up in
the long run.

An intertemporal equilibrium {Ri (t),Ii (£)}=t=0, i=1,..,N,
is defined such that the strategies of all N operators are
mutually compatible. The solution in this instance is simple.
All firms adjust to desired capacity at the initial date and
maintain +that level thereafter. For an initial period (0,T),
capacity is fully utilized by every operator.

Suppose now that demand is isoelastic. Then on the
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subsegquent interval (T,=) total output declines smoothly sco that
the resource price grows at the rate of r per cent. In fact on
this interval of time Ri (t)=(1/N)R(t), 4i=1,..,N. That is, total
output is symmetrically distributed across firms .26 The PV of
operator i’s revenue stream is then

(49) Vi = (lze-rT) p((N-1)f(K)+f(K: ))f(Ki)
r

+ e rT p((N-1)f(K)+f(Ki)){So~TF(Ki)}

Note +that although Ki =K in equilibrium, the two are kept
conceptually separate, since firm i takes others’ scale of
operation +to be independent of its own decisions. Max{Vi-qKi }
now provides the rule for choosing Ki. Using (49), firm i
therefore chooses Ki to satisfy equation (50):

(50) (1-(1+rT)e-rTH)F’ (Ki){p(.) + P’ (.)f(Ki)}
r

+ rTe-rTp(.)f(Ki )T + e rT So{p’(.)f’ (Ki) - rp(.)dI} = gq,
dKi dKi

where the argument of p{.) and p’(.) is understood +to be
(N-1)f(K)+£f(Ki). The derivative dT/dKi is found by implicit
differentiation from the firm’s reserves constraint (51):

r= —
(51) So = Tf(Ki) + 1 | D(p((N-1)f(K)+f(Ki))er(t-T))dt.

N It

Substituting the derivative back into (50), a little manipulation
(following the steps in Appendix B, part (i)) shows that the

equilibrium condition can be written as

(507) (1=(l+rTie-rT) p((N-1)E(K)+£(Ki)) £’ (Ki) (1 + 1 ) = q.
r Nn
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Recall now +that the conditions for the choice of Ki in the

monopoly and competitive cases are given respectively by
(38°) N (1 - (1+rT)e-rT) p(Nf(K))f’(K) (1+1) = Na and

r i3
(14°) N (1 - (1+rT)e-rT) p(Nf(K))f’'(K) = Nqg

r

It is straightforward to confirm that, for given N, the solution
here 1lies between the competitive and monopoly solutions. Per-
field capacity choice is larger than under monopoly but smaller
than under competitive exploitation. However, in comparing these
cases it is important +to bear in mind that in the present
construct the number of operators cannot be changed without the
number of deposits being changed at the same time. Recall also
that each deposit contains a fixed amount of the resource, So.

If N is close (equal) to one, the term (1+1/Nh) is close
(equal) to (1+1/h), which arises in the monopoly case (see
equation (38’) with N close (equal) to one). Setting the number
of firms equal to one thus retrieves the monopoly soclution with
one deposit. Conversely, suppose N is a large number. Then
(1+1/Nn) is close to unity. The solution in this case coincides
approximately with the competitive solution (see equation (147))
with a large number of deposits.

The result is summarized in proposition 5:

Proposition 5 Under isoelastic demand, a Nash-Cournot allocation
overconserves the resource (in the strong sense) relative to the
competitive outcome, but the magnitude of the distortion is
smaller than under monopoly. If the number of operators is

sufficiently large, the bias is negligible.
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5. VARIANTS OF THE BASIC MODEL

How robust are the results derived in the basic model of
section 27?7 Among the assumptions employed there are (a) the
assumption that capital equipment can be purchased and installed
at constant unit cost when so desired; (b) the assumption that no
variable inputs are used in the extraction process; and (c) the
assumption that the capital equipment is not subject to any
physical depreciation whatsoever. The subsections that follow
relax each of these in turn, and give an indication of how this
modifies +the basic properties of the solution characterized in

section 2A.

A. Adjustment Costs in Capvacity Installation

Suppose that the adjustment cost function for capacity
installation in deposit i is given by Ci(Ii). Ci(.) is assumed to

display the following properties:

(A.7) GCi(.) is twice-continuously differentiable with Ci (Ii)>0,
Ci'(Ii )})>0 for 1:i>0, Ci(0)=Ci’(0)=0, and Ci"(Ii)>0 for
Ti =0, 4i=1,..,N.

In words, capacity expansion entails increasing marginal
adjustment costs. The adjustment cost function has been defined
only for Ii=0 because the assumption that the equipment has no
resale wvalue 1is retained. Assumption (A.7) now supplements
assumption (A.4) in section 2.

Under the present construct, decisions about capacity
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buildup and extraction cannot be separated, even in the special
case of identical deposits. Formally, the planner chooses time

profiles {Ri (£),Ii (£)}=t=0, i=1,..,N +to maximize

!"ﬂ
(52) t e rt{u(iLiRi(t)) - Eiflqgli (£)+Ci(Ii(t))]}dt

Jo
subject to constraints (2) - (5), where Ki (0) is assumed to be
positive but "sufficiently small”, i=1,..,N. The necessary and

sufficient conditions for a maximizing solution are the same as
those in section 2A (that is, (2)-(6) and (8) with pi constant,
i=1,..,N). The only difference is that the optimality condition

{(7) now becomes

(53) e rt{q + C’'(Ii(t))} = M (L), Ti(t) = 0 (C8)

where lim Ai(t)=0, i=1,..,N. Recall that Ti is the date at which
depositizldefinitively ceases production, 0<KTi =,

What are +the general properties of the solution in this
case? To begin with, it is clear that "bang-bang” adjustment is
infinitely costly, so any capacity expansion must be "staggered"
over time. Next, it is useful to note that, at any given date,

one of the following regimes must be the applicable one for

deposit i:

Type 1 phase : Ii >0, Ri=fi (Ki);
Type 2 phase : Ii=0, Ri=fi(Ki); or

Type 3 phase : I1i=0, Ri<fi(Ki).27

For N=1, or where deposits are identical in every respect,

it is straightforward to show that a type 1 phase (which exists
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provided initial stocks of capital equipment are "low"”) must be
the first to occur, and cannot recur once it ends. This is
because an interval on which Ii >0 which begins at some date +t1>0
can be shown to imply a time~increasing resource price, which
raises a contradiction in the single or identical deposit case
(Appendix C demonstrates that under identical deposits optimality
dictates identical investment rates). Under these circumstances,
there 1is an initial interval of time on which the resource price
falls, followed by a period on which price is constant, followed
in turn by a (final) period on which +the Hotelling rule is
satisfied.

In the case of heterogeneous deposits, it does not appear
possible in general to establish that for any given deposit j, a
type 1 phase must be the first to occur, and does not recur.
However, 1if a type 1 phase is observed for deposit j (this will
be the case if Kj(0) is sufficiently small), it is clear firstly
that investment must fall smoothly to zero towards the end of
this phase. This follows from (53) and assumption (A.7).
Secondly, this phase must be followed by a type 2 phase; that is,
a transition directly from a type 1 phase to a type 3 phase can
be ruled out. Suppose the contrary, and let T; denote the date at
which the type 1 phase ceases. Then by the continuity of »j(t)
we must have e rTijg=hj(Tj); or, integrating (8),

™

(54) q = .l; e-r(t-T;) {p(R(t)) - mjert}f’(Kj(t)) dt,
T

where again T; is the date at which the exploitation of deposit J
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stops definitively. Thus p(R(t))>pjert (which implies that
deposit J is exploited at maximum capacity) on at least one
interval of time after Tj. Let (to,t1), to=Tj, ti1<T;, denote the
earliest such interval of time. It remains now to establish that
to=Tj; +that is, capacity continues to be fully employed for some

time after T;. Suppose instead that to>T;; that is

p(R(t)) - pjert = 0, +t€(T;j,t0).

But then, since

p(R(t)) - mjert > 0, t€(to,t1),

p must (using the continuity of p and pj) grow at a larger rate
than r per cent on a right-hand neighborhood of to. However, the
fact that p is growing implies that there is at least one deposit
- h, say ~ for which output is positive but declining over +time.
The optimality condition in turn implies that p(R)-pnert=0 on
that neighborhood, and therefore contradicts the requirement that
p should grow faster than r per cent. Thus to=Tj; that is, for an
arbitrary deposit j a type 1 phase must be followed by a type 2
phase, as asserted. If a type 3 phase arises for deposit j, a
type 2 phase precedes it.28

In short, for the case where capacity expansion is subject
to adjustment costs, it is difficult to say much in general about
the time-distribution of investment profiles and output in
individual deposits. If the initial stock of capital equipment in
every deposit is sufficiently small, there is an initial interval
of time on which the output rate in every deposit is non-

decreasing and capacity is strictly increasing in at least one

59



deposit.29 In this case, one would observe a falling resource
price for an initial period of time. Any period during which the
resource price is rising, however, must display the Hotelling
rule. The Hotelling rule must hold on a final interval of +time,
but &a phase of r per cent price growth between periods of non-
increasing prices cannot be ruled out. All that is required is
that at least one deposit should exhibit a declining output

rate during such a phase.30
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B. A Variable Factor in the Extraction Process

The use in the extraction process of (at least) one variable
input retrieves, under appropriate conditions, +the result that
the aggregate output rate is everywhere a declining function of
time. To demonstrate this point, the construct is the same as in
section 2A. Adjustment costs are once again ignored. The only

difference is that constraint (4) here reads, for t>0,

(4’) Ri(t) £ fi (Ki (t),Li (2))

(ignoring +the non-negativity constraint on output). £fi(.) is

assumed to satisfy the following conditions

(A.8) fi(.) 1is +twice-continuocusly differentiable and Jjointly
(strictly) concave in both its arguments. Also

fi (0,L)=f4 (K,0)=0, i=1,..,N.

L is +the variable factor, and has a flow price of w, for
convenience assumed time-invariant. Note that (4’) will always
hold with equality; otherwise costs could be reduced by reducing
Li with no loss of output.

In order to maximize the Hamiltonian

H=ert{u(fifi(Ki(t),Li(t)) - qiTi(t) - wiili(t)}

- S fi(Ki(t),Le (B)) + & (£)15 (1),

at each date, for Li>0 the time-path of the control variable Li

must satisfy, i=1,..,N,

(55) w = {p(&:ifi (Ki(t),Li (t)) - piert}fip(Ki (t),Li (t)).
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To show that total resource extraction declines over time,
note first that, for Ii(zki)>0, e rtg=hi. Time-differentiating

and substituting in the multiplier equation
A o= - {ertp - 4 }fix

vields that

(56) rq = {p - pert}ifixg

{where arguments have now been left ocut). (65) and (56) can then
be used to eliminate p-piert. Time-differentiating the resulting

equation yields that
(57) Ti = (rafinL - whikL ){wfikk - rqfirk}-1Li,

implying that ﬁi and Ii have the same sign. In other words, if
Ii >0 during a specified interval of time, deposit i must display
a production rate that is time-increasing. Next, time-
differentiating (56), and substituting (57) into the resulting

expression gives

(58) Ti = - (p - rumert) { finn(wfikk - rafipk) + fipk }-1
(p - miert) (rofinn - wfigkn)

whence a necessary condition for Ii >0 is that ﬁ)O (the term in
the curly brackets is negative by the joint concavity of fi (.)).
That is, aggregate production should be declining.

Thus if one observes ﬁ(:Eiﬁi)EO (or a non-increasing
resource price) on a given interval of time, the preceding
argument ensures that Ii=0, i=1,..,N, on this interval. A time-

increasing aggregate output rate must therefore imply L;j=0 (but
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I1;=0) for some deposit j on some interval of time. But in this

case time-differentiating (56) implies that
(59) (p - rujert)fir + (p - pjert)finLLi = 0.

However, ijéo together with §£0 violates (59). This rules out the
possibility that R20 on any interval of time, so the aggregate
resource extraction rate must be everywhere a strictly declining
function of time.31

Rather more intricate is the question of the time-pattern of
output in each individual deposit. In general, +the possibility
that +two individual deposit production rates display time rates
of change with opposite signs cannot be ruled out. This has been
demonstrated in a recent paper by Hung (1986), albeit using a
model in which, implicitly, all inputs are variable.32 Although
in +the present context one would expect the irreversibility
constraint on capacity expansion to counteract +this tendency

somewhat, it remains a possible feature of an optimal programme.
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C. Capital Equipment Decay

In the framework of section 2, suppose now that capital
equipment evaporates at a constant percentage rate 4£>0.,33

Constraint (3) then changes to
(3°) Ki (t) = Ii () - &Ki (%)

and the objective function (1) of section 2A is now maximized
subject to (2), (3’), (4) and (5). A solution to this problem

satisfies (6), (7) and (omitting time-arguments)
(8°) Wi ~ &ni = - {e-rtp(R) - pi}fi’ (Ki)

for i=1,..,N.

It 1is straightforward to show that under these conditions
too the aggregate production profile is a strictly declining
function of time. For suppose to the contrary that REO (that is,
p=p’(R)ﬁ£0) on a given interval of time. Then on (at 1least) a
subinterval of this time-interval, Rjéo for some deposit j. If
deposit J is operating at less than capacity, e-rtp=pj, so that
p>0, contradicting the required result.

Deposit j must therefore be operating at full capacity, and
to ensure that ﬁjzf’(Kj)kjéo, it is necessary that I;>0. Since Ij
is positive, h=ze-rtq. Time-differentiating this and using the

result in (8’) gives
(r+d)q = {e-rtp - p;}f;’ (Kj)

on a non-degenerate interval of time. Time-differentiating this

in turn yields

64



¥

Ki = - £5°(p - rujert ){fj"(p - pjert)}-1.

For this to be non—negative, a necessary condition is that ﬁ)O,
which is a direct contradiction of the initial supposition.

The aggregate extraction rate is therefore everywhere a
strictly declining function of time. However, as before there
appears to be no obvious way of demonstrating that individual
deposit output rates must always be (at least weakly) time-

decreasing.
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6. CONCLUDING REMARKS

The principal aim of +this paper has been to reassess some
common results in the exhaustible resources literature where the
exploitation of resource deposits requires non-malleable capital
equipment to be used in the process. Non-malleable capital
has been defined here as equipment which, once installed, has no
resale value.

Many of these common results remain - qualitatively - intact
in the present context. For example, most of the results about
the distortionary effects of fiscal instruments are similar to
those which emerge under costless extraction or simple cost
conditions. Also recognizable is the result that under isoelastic
demand monopolistic and Cournot-Nash depletion profiles are
excessively conservationist, with the latter tending +to the
competitive outcome if the number of operators is large.

A number of other results are 1less conventional. They
include the finding that, under the assumption of concave
technologies, deposits of different "quality"” are exploited
simultaneously for a period of time, a result that remains wvalid
with the introduction of adjustment costs associated with
capacity expansion. The resource price need not always be time-
increasing; for certain periods of time it may remain constant or
(if there are adjustment costs) fall over time. In addition, the
novel result about the ambiguous interest rate effect on
depletion emerges in a sharp form for the case of identical
deposits displaying diminishing returns technologies with one

non-malleable factor of production.
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There are, of course, a number of weak points in the
analysis of this paper. One is that - except in section 5B -
+the assumption is retained throughout that non-malleable capital
is the only factor of production (or +that the extraction
technology 1is of a particular Leontief type).34 In its absence,
it is unclear in particular how individual deposit extraction
rates move over time on an optimal programme. Another drawback is
that the bulk of the comparative dynamic results have been
derived under the assumption of identical deposits. It 1is not
transparent, for example, that with heterogeneous deposits a
larger interest rate would have a uniform effect (qualitatively)
on the initial output rate of all the deposits.

Finally, +there are a number of other omissions, including
uncertainty, policy credibility questions in taxation, and
dominant firm equilibria. A detailed treatment of these aspects
would undoubtedly yield a number of interesting results, but does

not appear to be an easy task.
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APPENDIX A

This Appendix verifies the claims in section Z2A that under
the assumptions there (1) gradual capacity expansion in any
given deposit Jj cannot begin at the initial date; (ii) in the
special case where deposits are identical in every respect,
gradual capacity expansion can be ruled out altogether; and (iii)
any discrete addition to the stock of capital equipment in

deposit j, j=1,..,N, can occur only at the initial date.

(1) Suppose that for a given deposit j, I is a singular
control, so 1Ij>0 on some interval (ti1,tz). Then during this
interval e-rtg=hj. Differentiating with respect to time and

using (8) to eliminate ij yields that
rq = {p(R) - pjert}f;’ (Kj).

Time-differentiating this in turn gives (omitting arguments) an

explicit expression for I;:

- ﬁi’{ﬁ - rpjert}
£fi"{p - Hjert}

(a.1) I,

To ensure that I;>0, as supposed, it is necessary that é)O on
(t1,t2). Now Ri () is piecewise continuous, all i=1,..,N. So it
is possible +to find a deposit h®j and associated time interval
(t1,t2h), +t2b=tz, on which Bh(t) is continuous with éh(t)(O and

0<Rn<fn(Kn). Then from the optimality condition (6),
P(R) = pnert

on (ti,tzh). It can now be shown under the present assumption
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that Ki (0)=0, i=1,..,N, +that gradual capacity expansion in any
deposit can only begin after the initial date. Thus if, for an
arbitrary deposit Jj, Ij>0 on some arbitrary interval of time
(t1,t2), then t1>0. For suppose that ti=0, so that e rtp(R)=pn on
(0,t2b), +2h>0. Since optimality rules out any increase in p(R)
of more than r per cent (this is shown later in section 2A4),
e-rtp(R)=<pn for all +>0. Thus, whatever the ostensible
equilibrium choice of capacity for deposit h at the initial date,

f™n
M(0) = | {er3p(R) - phl}fn’(Kn)ds = 0 < q ,

do
where Tn 1is the date at which extraction from deposit h stops
definitively. This implies that excessive extractive capacity has
been installed at deposit h. Unless inherited (that is, initial)
capacity in deposit h is "very large” (by assumption it is not),
this cannot feature in an optimal programme. Consequently the
supposition that ti1=0 contradicts optimality. The initial date
cannot mark the beginning of an interval on which I;>0 for some
deposit J.

It follows from this discussion that there must be an
initial phase on which all deposits are operated at capacity
{(positive for at least one deposit) and no (gradual) expansion
takes place. The optimal programme thus always features an

initial phase on which é:O.

(ii) In the special case where deposits are identical in
every respect (that is, fi(.)=f(.) and Si(0)=5S0, i=1l,..,N),

gradual capacity expansion can be ruled out altogether. This is
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done by showing that if the first observed interval of capacity
expansion does not involve a capital stock discontinuity, the
programme must be inefficient. Any capital stock discontinuity
(other than at the initial date) is then ruled out in part (iii)
of this Appendix. This implies that the first phase of investment
is always inefficient, and will therefore not be observed.

Let +t1(>0) denote the egarliest date at which a phase of
(gradual) expansion begins in at least one deposit. Pick one such
deposit, and call it deposit N. Because IN>0 for a phase
beginning at t1, (a.l1) indicates that §>O during this phase. Let
(t1,t2M) denote an initial portion of this phase, and suppose
that M deposits (1 £ M £ N-1) exhibit a positive but declining
extraction rate during this interval of time. Call these deposits
1,..,M. Then on (t1,t2M) e ttp(R)=pm, m=1,..,M. Since
e rtp(R)>uN over the same period, it follows +that pN<pm,

m=1,..,M. Moreover, because §>0 on (ti1,ta2M), Emﬁm(t)+ﬁn(t)<0.

Now since e-rtp(R)=um on (t1,tz2M), we deduce that
e"rtp(R)=mm for all t>ti, m=1,..,M. This is because any price

increase of more than r per cent cannot be consistent with
optimality (see section 2A). Using this fact, we have from

condition (8) that

Mm
(2.2) dm(0) = | {ersp(R) - mm}f’ (Km*(0))ds
Jo
fti
= | {ersp(R) - mm}f’ (Kmt+(0))ds
Jo
for deposits m=1,..,M. Km is constant over (0,t1) because by
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hypothesis t1 is the first date at which a phase of positive
investment starts (we exclude the possibility of a discontinuous
increase in Km after the initial date; section (iii) Dbelow

demonstrates that this cannot arise). Similarly, for deposit N

fti
(a.3) XN(0) = | {e-rsp(R) - wpN}f’ (KN+(0))ds
o
f™N
+ i {ersp(R) - un}f’(Kn(s))ds.
e
Now optimality requires that AW (0)=xm(0)=q, m=1,..,M. That is,

capacity buildup at the initial date proceeds up to +the point
where in each deposit the incremental benefit from installing a
further unit then just equals the incremental cost of deoing so.
Equating (a.2) and (a.3), and recalling that pN<pm, m=1,..,M, and
that £"(.)<0, it emerges that Kn+{(0)>Ka+(0), m=1,..,M. Thus,
capacity in deposit N is larger on (0,t1) and expands further
after t1.

Next, we note that so long as deposit m (m=1,..,M) has not
definitively ceased production, e-rtp(R)zum. So throughout the
life of deposit m, e rtp(R)>pn, and deposit N therefore operates
at full capacity. Because deposit N has larger capacity than
deposit m and is operated at full capacity throughout the life of
deposit m, and because deposits have identical initial stocks, it
follows +that: (a) deposit N 1is exhausted before deposit m
(m=1,..,M); and (b) deposit N is exhausted at full capacity.
Figure a.l depicts a possible path for the stock of capital
egquipment in deposit N. (t1,t2) denotes the first expansionary

phase (further expansionary phases may occur, though Figure a.l
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does not show this). TN is the exhaustion date for deposit N.

Kg(t)

-+

1 e 2 v N time
FIGURE a.l1
The inefficiency can now be demonstrated by considering the
following perturbation:

Kn’ (1)

it

Kn{t) 0=ttt , t=t1+%; and
KN’ (t)

it

Kn(t1) t1 <t<t1+E,

where Kn’{(t) denotes the perturbed profile and £ is an
arbitrarily small positive number. In Figure a.l this
perturbation amounts to deviating from the original profile where
indicated by the broken path. Since r>0, this delay in expansion
entails a cost saving. It remains to demonstrate that by a
suitable rearrangement of individual deposit production rates the
aggregate extraction profile can be kept unchanged.

For +t€(t1,t1+€), +there is now a shortfall of magnitude
[£(RN(t))-f(KN’(£))} in the contribution of deposit N to total

output. By the same token, deposit N retains a portion of stock

given by
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ft1+*
(a.4) | {f(Kn(t))-f(Kn’(t))1}dt

dra
that would otherwise have been extracted on (t1,t1+€) and will
now remain at TN. Now make up for the output shortfall from
deposit N by having a slightly larger output rate from deposit m
(m=1,..,M) on (ti,t1+€). This compensation mechanism is clearly
feasible, since the requirement is that EmRm(t)+RN(t)<0  on
(t1,t1+€), Deposit N will now have incurred a total reserve
“debt"” to deposits 1 to M given by (a.4). "Repayment"” can occur
on an interval of time beginning at Ty (for sufficiently small €,
deposit m, m=1,..,M, will remain unexhausted at Tn). Output from
deposit m (m=1,..,M) can be reduced by an appropriate amount on
this interval of time, and the shortfall made up by a positive
production rate from deposit N until the portion of stock given
by (a.4) has been used up entirely. At that point, deposit m
(m=1,..,M) will be left with precisely the same reserves that it
would have had in the original programme.

To sum up: it has been shown that the first observed phase
of expansion must, if the programme is free of discontinuous
increases in the stocks of capital equipment after the initial
date, imply that the allocation is inefficient. In other words,
without attendant jumps in capital equipment stocks, the earliest
phase of capacity expansion must be inefficient, and thus would
never be observed in an optimal programme. The final section of
this Appendix now shows that the strict concavity property of the
optimization problem precludes discontinuous increases in capital

stocks after the initial date.
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(iii) This section establishes that any discontinuous
additions to capital equipment must all occur at the initial date

t=0. Note first that the objective function (1) can be written

rm
(a.b) | ert{ w(LiRi(t)) - qg¥ili } dt
Jo
G N
- q L exp(-rTg) & {Ki+(Tg) - Ki-(Tg)}
g=1 i=1

(a.5) is optimized subject to constraints (2), (3) and

(a.B) Ki(t) = £ {Ki*(Tg) - Ki-(7Tg)} + ftI(S)ds
Tg <t Jo

where Ki*t(Tg)-Ki-(Tg)=0, i=1,..,N and g=1,..,G. The date 7Tg
{(g=1,..,G) represents a jump date when at least one of +the Ki
increases discontinuously. The timing of each jump date and the
magnitude of the jump in each variable at each such date (perhaps
zero) must be determined optimally. Ii (£) now assumes only finite
non—-negative values, i=1,..,N.

As shown by Vind (1867), Arrow and Kurz (1970, pp. 51-7) and
Kamien and Schwartz (1881, pp. 226-32), +this problem has the

following equivalent: choose the time paths of Ri (w), Ii(w) and

Ji{(w), i=1,..,N, and vo(w) to maximize
rm

(a.7) | ertyvo(W){u(EiRi(w))-qtili(w)} - e-rt(l-vo(w))q¥i Ji (w)dw
Jo

subject to the constraints

(a.8) d Si(w) = -~ vo(Ww)Ri(w), Si(0Q0) = Sio, lim Si (w) =2 O;
dw W™

T4



(a.9) d Ki(w) = vo(w)Ti(w) + (1-vo{(w))Jdi(w), Ki{(0) = O;
dw

(a.10) vo(w){fi(Ki(w)) - Ri(w)} = 0O;

(a.11) vo(w)Ri (w) = 0Q;

{(a.12) vo(w)Ili(w) = O;

(a.13) (1-vo(w))Jdi (w) = O;
all for i=1,..,N, and
{(a.14) dt = vo(w) = 0 during a jump interval
dw
1 otherwise.
Notice +that jumps in the state variables Ki,..,KN no longer
appear in the transformed problemn. The basic idea is that the

problem is reformulated in "artificial time"” w, which runs apace
with natural time t between jumps (equation (a.14)). At a Jjump
date, however, the passagé of natural time is halted, but
artificial time continues to run for a specified interval, during
which a jump in Ki, if required, can be effected smoothly for
i=1,..,N (a dummy contreol, Ji, simply assumes a positive value
over the interval, or a value of zero if no jump is desired).

Let mpi and Xi, i=1,..,N be +the multiplier functions
corresponding to (a.8) and (a.9) respectively, and »o0 the
multiplier function corresponding to (a.14). The present value

Lagrangian for (a.7) - (a.l14) reads
(a.16) L = vo(w) { e-rt [u(fiRi(w)) - Eili(w)]

+ no{w) - LipiRi(w) + Eixi(w)li (w)
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+ Lt (w) [fi(Ki(w)) - Ri(w)] + EiBi (w)Ri (w)
+ Eivi (w)Ii (w) 1}

+ (l-vo(w)) { Zihi (W)Jdi(w) - e rtqlidi(w)

+ i i (W)Ji (w) }

= vo{w) La + (l-vo(w))Llv say,

where &, B8i, i and &, i=1,..,N are the Lagrange multiplier
functions appended to (a.10), (a.l1l1), (a.12) and (a.13). Now let

L0 denote the maximum value of L. Then

0 = max {vo(w)L%a + (l-vo{(w))LO»v}
VO
where
[0a = max La
{R1,..,Rn}
{Ir,..,In}
and Lob = max Lb
{Jr1,..,JdN}
Now 4if Ji, i=1,..,N is chosen to be some non-negative function
over a Jjump interval (when L0 takes +the wvalue LOb), another

function can always be found that is constant over +the Jjump
interval and yields the same value of (a.T). So without loss of
generality Ji, 1i=1,..,N can be viewed as a constant function
(perhaps zero) over each jump interval.

Next, it should be noted that hi (w)ze-rtq for all i, w.
Failing this, Ji could be set arbitrarily high and (a.7) would
have no maximum. So Lop £ 0, and in fact L9y = 0 can always be

obtained by setting Ji =0, i=1,..,N. Therefore
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10 = max vo(w)loa
vo

from which it is evident that [0z £ Q0 if vo({w)=0 whereas [0ax=0 if

vo(w)=1. Consider now a hypothetical jump date Tg>0 (that is,
not the initial date) in natural +time, and denote the
associated jump interval in artificial time by (wg~,wgt). Since

19 is continuous in w, and zero on a jump interval, LCa must be
zero both at the beginning and at the end of this jump interval
(and naturally L9a£0 during the interval).

It is however straightforward to verify that on the proposed
jump interval (wg-,wgt), L%a must be strictly concave in w, in

direct contradiction to +the requirement in the preceding

sentence. The argument is as follows. Firstly, each Ki is
linear in w (Ji=0 is constant by construction). Secondly, »o(w)
satisfies
draof{w) = - It = r vo(w) e rtfu(liRi(w)) - q&ili (w)]
dw
- r (l-vo(w)) e-rtaliidi(w)
= -r e rt giidi(w) on a jump interval,

so that it is also linear in w on such an interval. Finally,

from (a.15), and letting Ri* and Ii* denote the choice of Ri and

Ii, i=1,..,N that maximizes La, we have
(a.18) 4d2[0a = e-rt [u"(EiRi*’)2 4+ W iLiRi*"
dw2

- gqFi Ji*"] + No" - EipgiRi*"
+ 1 {2Mhi7Ii* + i "Ii* + Rili*"}; orx

(a.16’) d2l%s = e-rt u” (LZiRi*’)2 + EiRi*" {ertp - i}
dw2
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where the arguments of u" and u’=p have been omitted. The terms
in Ii* drop out because for Ii*>0, xi=z=ge-rt remains constant over
the Jjump interval.

The first +term on the right-hand side of (a.16’) is non-
positive, since u"<0 and (LZiRi*’)220. Consider now the second

term, component by component. Clearly if (e-rtp-pi )<0, then
Ri*"(e-rtp-pi) = Q

(recalling that e-rtp-pi <0 implies Ri*=0). On the other hand, if

e-rtp-pi >0, then
Ri*"(e-rtp-pi) = fi "(Ki(w))[Ki’(w)]2(ertp-pm ) = O,

with strict inequality if Ji >0 on the jump interval (recall that
e-rtp-pi >0 implies Ri* o fi (Ki(w)), and that by construction
Ki (w) is linear in w on a jump interval). Finally, by definition
Jij >0 for some deposit j on a jump interval, and it is clear that
for this deposit e rtp-p;>0 during the interval. If instead
e-rtpfu; at any time during the interval, this must remain the
case for all (natural and artificial) time subsequently, Dbecause
p cannot grow at a rate exceeding r (see section 2A). This means
that »;j=0, so additional capital equipment in deposit J 1is
worthless, which contradicts the supposed optimality of setting
Jj >0 during the interval.

Thus at least one term in (a.16’) 1is negative, SO
d2L0a /dw2<0 and IL%a is strictly concave in w, as asserted
earlier. This rules out a jump in Ki, i=1,..,N, at any date

other than the initial date.
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APPENDIX B

This Appendix details the steps in the derivations used in
section 4B of the text.
(i) To obtain expression (38) for VMK from (36°):
Differentiate (36’) with respect to K. This gives
VMg = N [ (1-(1+rT)e-rTY{p(Nf(K))+p’ (NE£(K)INE(K)}f’ (K)
r
+ p(Nf(K))f(K)rTe-rTdT
dK
+ e rT So {p’ (Nf(K))Nf’(K) - rp(Nf(K))dT 1} 1.
dK
Some rearrangement yields
(b.1) VMx = N [ (1-(1+rT)e rT)p(Nf(K))f’ (K)
+ (l-e-rT)p’ (NE(K)INF(K)F' (K)
r
+ e-rT (So-Tf(K)){p’ (NEf(K))Nf’ (K) - rp(Nf(K))Q%} ].
d
Now dT/dK is given by equation (16) (section 2C) in the text.

Put +this into (b.1) to evaluate the term in curly brackets.

(b.1) then becomes

(b.2) VMg = N [ (1-(1+rT)e rT) p(Nf(K)If’(K)
r
+ (1-e-TT) p’ (NF(K)INF(K)F’ (K)
r

- e-rT (So-TE(K)INTE’ (K) 1.
rw
i D’ (p(Nf(K))er(t-T) )er(t-T)dt
Jr
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Next, multiply and divide the second and third terms on +the

right-hand side of (b.2) by p(Nf(K)) and use the facts that

"‘m
(b.3) So - Tf(K) = 1 | D(p(Nf(K))er(t-T)dt; and
N it )
(b.4) p(Nf(K)) = D'(.I)p(Nf(K)ler{t-T) = n for t = T
p’ (Nf(K))Nf(K) D(.)

where the argument of D(.) and D’°(.) is understood +to be

P(Nf(K))er(t-T) , A few cancellations now give
(b.5) VMg = N [ (1-(1+rT)e rT p(Nf(K))f’(K)
r
+ (l-e-rT) p(Nf(K))f’(K)
rh

- e rT T p(Nf(K)F’ (K) ].
n
Equation (38) in the text then follows directly from (b.5).

(ii) To obtain expression (38) for VMK in the text:
For n"(R)<0, the derivative VMK reads as in the iscelastic

case up to (b.2). Using (b.3), the last term in (b.2) becomes

rm
(b.6) ~-e-rT | D(p(Nf(K))er(t-T))dt Tf’(K)
AT
fm
I DP(p(Nf(K))er(t-T) )er(t-T)dt
it

(omitting +the factor of N outside the square brackets in (b.2)).
Now multiply and divide the integrand in +the denominator by
D(p(Nf(K}))er(t-T), and (b.6) itself by p(Nf(K)). (b.6) then

becomes
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rm
~e-rT | D{p(Nf(K))er(t-T))dt Tf’ (K)p(Nf(K))
T
fm
I D(p(NE(K)er(t-T) y(D(p(Nf(K))er(t-T)))dt
it

or, using the definition of G(T) in the text (see equation (39)),

[‘m
(b.7) -e-rT | D(p(Nf(K))er(t-T))dt Tf’ (K)p(Nf(K)).
AT
I‘m
G(T) N(Nf(K)) | D(p(Nf(K))er(t-T))dt
4T

Finally, using (b.7) to simplify (b.2) gives (39).

(iii) To obtain the expression (43) for VMk:
For %’ (R)>0, (41) gives the maximum wvalue function. Its

derivative with respect to K is
(b.8) VM = N[ (l-e-rT)(£f(K)p’(Nf(K))Nf’(K)
r
+ p(NEf(K))f’(K)) + e rT p(Nf(K))£(K)dT
dK

rw

+ e rT{m’ (NE(K))Nf’ (K) - rm(Nf(K))%%}l n’ (t){p(t)+p’ (t)n(t)}dt 1],
Jr

where

n’{(t) = n’ (m(Nf(K))er{(t-T))

n{t) = n(m(Nf(K))er(t-T))

- p(t) = p(n(t)) and

p'(t) = p' (n(t)).

Now from (42), which is the appropriate reserve constraint here
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rm
(b.9) 4T = THNf’(K) + Nf’ (K)m’ (Nf(K))}{ er{t-Tin’(t)dt
dK i1
rw
r m(NEf(K)) | er{t-Tin’(t)dt
T

Using (b.9), the term in curly brackets in (b.8) can

simplified to

fm-
~TNf’(K) / | er{(t-T)n’(t)dt.
I

Replace this in (b.8), and note that

(p(t) + P’ (t)n(t)) = m(Nf(K))er(t-T),

be

Making the appropriate cancellations in (b.8) and collecting

terms then gives equation (43).
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APPENDIX C

This Appendix demonstrates that, in the case of identical
deposits with identical capacity adjustment cost functions, the
optimal programme features identical investment profiles across
deposits.

Consider the objective of minimizing, by choice of

{Ii (s)Its=0, i=1,..,N, the PV of the costs

it
(c.1) | e rsifi{qli + C(Ii(s))ds
30

of constructing a given aggregate output capacity R by some date

+>0. The constraints in this optimization problem are
(c.2) Ki(s) = Ii(s), Ki(0)=Ko

(where Ko is "small"), and the "terminal" condition
(c.3) Tif(Ki(t)) -R =0

for i=1,..,N. A solution must satisfy, for O=s«t,
(c.4) e rs{q + C’'(Ii(s))} + oi 2 0, Ii(s)=0 (C8)

where oi 1is a constant, i=1,..,N. Moreover the endpoint
condition (c.3), together with Farkas’ lemma implies (Kamien and
Schwartz, 1981, pp. 143-8) that there must exist a number &,

independent of the subscript i, such that for i=1,..,N
(e¢.5) oi = & £7(Ki(t)).

Now pick any pair of deposits, say h and Jj. If Kn(t) = Kj(t),
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then (c.4) and (¢.bH) immediately imply that In(s) = 1Ij(s) for
O£s3<£t, so the +two fields must have identical associated
investment profiles. It remains then to rule out the possibility
that Kj(t)#Kn(t). Suppose without loss of generality that

Kn(t)>Kj(t). For s such that Ij{(s),In(s)>0, (c.4) and (c.5)

imply that
(c.6) a+C’(In(s)) = +C? (T4
£ (Kn (%)) £ (Ki (£))
So if  Kn(t)>Kj(t), £ (Kn (£))<f’ (Kj(t)), and therefore

C’(In(s))<C’(Ij(s)), implying that In(s)<Ij(s) for any s if both
In and I; are positive. But then deposit h cannot have a larger
"terminal" stock of capital equipment than deposit j, unless for
some s’, 0<s8'<t, In(s’)>Ij(s’)=0. In this case (c.4) and (c.b)

together yield that

Q = a+C’ (In(s’))
£ (Ki(t)) £’ (Kn(t))
which 1is a contradiction. Thus Kj (t)=Kn(t) for arbitrary Jj and
h. The "terminal” date t and the desired capacity were also

arbitrary, so this holds for any t>0 and R>0.

Finally, since every deposit contains the same amount of the
resource, a symmetric extraction profile across deposits at all
dates is feasible, so the "trial" solution (identical investment

profiles) is indeed an optimal programme.

84



NOTES

1. Increasing returns in the extraction process create
difficulties for +the existence of competitive equilibrium if
mixed ("chattering") strategies are disallowed (Eswaran et al.,
1983). Essentially +the problem arises because the second-order
instantaneous equilibrium conditions demand that firms remain on
the upward sloping portions of their marginal cost curves, and
this is inconsistent with the requirement that extraction decline
smoothly to zero.

2. Depending upon the case at hand, "investment" activity can
refer wvariously to well-drilling, mineshaft construction or
platform erection as well as the purchase and installation of
smaller items of plant equipment. The rationale for assuming
that adjustment costs are convex then acquires a greater or
lesser degree of cogency depending on the +type of investment
activity referred to.

3. For a multi-deposit framework, Blackorby and Schworm consider
both the case where (i) all inputs used in the extraction process
are variable; and (ii) fixed capital - changes in which incur
adjustment costs - is used in the extraction process.

In case (i), it 1is possible to construct an aggregate
measure of extraction (not necessarily the sum of individual
deposit extraction rates) provided that at least one firm (i.e.,
deposit) is subject to a non-linear extraction technology. All
firms facing non-linear net revenue functions must, moreover, be
of the same type. If, additionally, one requires an aggregate
resource stock measure - such that its time-derivative equals
minus the extraction rate - then the individual net revenue
functions must either all display additive separability, or all
display linear homogeneity in the stock and the extraction rates.
In all cases, allocation functions defined alongside determine
the allotment of +the aggregate magnitudes across individual
deposits. Somewhat disturbingly - although it is admittedly an
oversimplified case - a consistent aggregate version of the
extraction problem cannot be constructed if individual firms’ net
revenue functions depend only on the current extraction rate (and
not reserves).

In case (ii), it 1is possible to construct an aggregate
measure of extraction, investment and net revenue (along with the
appropriate allocation functions) provided that: (a) at least one
firm has a net revenue function that is non-linear in the
investment rate (and fulfils certain separability regquirements)
with all such non-linear firms displaying the same type of net
revenue function; and (b) at least one firm has a net revenue
function that 1is non-linear in the extraction rate (and meets
certain separability restrictions), again with all such non-
linear firms displaying the same type of net revenue function.
Conditions for the existence of aggregate measures of capital and
resource stocks in these cases can be similarly elucidated.
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4. In many applications, this is at best an oversimplified
description of the production possibility set. In the case of
petroleum, for example, output possibilities at a given date
depend not only on “capacity” as it 1is generally understood
(number of wells in place, pipeline capacity, etc.) but also on
reservoir pressure, which in turn depends on the precise volume
and pattern of cumulative production, and, where "secondary”
recovery is concerned, on the rate and timing of water injection,
ete. Discussions of optimal reservoir exploitation when these
attributes are taken into account appear in Kuller and Cummings
{1974) and Nystad (1984). On a more general note, Levhari and
Liviatan (1977) analyse +the optimal use-trajectory for an
exhaustible resource where extraction costs are a decreasing
function of the remaining stock. They demonstrate that the rate
of extraction may, over a certain interval, increase over time, a
result that is in stark contrast to the usual one (derived when
this effect is neglected) that extraction is a continuously
declining function of time. In what follows the above
considerations are ignored, but it should be noted +that they
could severely qualify the results.

5. Alternatively, any (internal) costs of adjustment are linear
in the rate of investment and subsumed under the purchase price.
Since the resale wvalue of a unit of equipment is zero, the
manager will be indifferent between removing a unit and leaving
it in place once it is definitively no longer required (the unit
does not hinder extraction) if removal costs nothing. If, on the
other hand, there is a removal cost - however small -
disinvestment never takes place; hence the irreversibility
constraint on investment in the optimization problem (1)-(5).

6. If instead deposit 1 had some reserves left at T2, an increase
in the objective function could be achieved by extracting a
little more from deposit 1 on (T1,T2). This is feasible, because
by assumption deposit 1 operates at less than full capacity on
this interval. It 1is also preferable, because the discounted
marginal value (MV) of the resource is larger on (Ti1,T2) +than
after Tz (by assumption price (MV) is constant, so the discounted
price is falling, on (T2,Ts)).

7. If we assume that total output is at each date equally
distributed across fields during (T,=), then for no deposit is
capacity a binding constraint after T. However, this is not the
only possible equilibrium. For t=T, any temporal distribution of
output between the two fields is acceptable provided only that
the aggregate extraction profile declines at the appropriate rate
and exhausts asymptotically the available reserves, and that the
individual deposit output rates are piecewise continuous
functions of time. Thus it is possible for some deposits to be
operating at full capacity even though aggregate output is
declining.

8. See note 7.
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9. Note that, if the variable of integration is changed from t to
F=p(Nf(K))er(t-T),

r-m rm
P D2 (p(Nf(K))er{(t-T) )p(Nf(K))er(t-T)dt = 1 | D’ (¥)4a¥
Jr Y Jp(NE(K))

=1 { lim D(¥) - D(p(Nf(K)) }

¥ 3=

Ly

= - N_£(K) (assuming lim D(¥)=0).

r ¥ -m

10. This term refers to a deposit under unitary control, either
as a result of historically given ownership patterns (or
requirement by the licensing authority) or private contracting to
overcome the "rule of capture” problen. Wiggins and Libecap
(1985) find evidence that the widespread absence, historically,
of o0il field unitization in the United States can be attributed
largely to ex ante imperfect information and information
asymmetries regarding the value of individual operators’ leases.
This hinders the erection of judicious rent-sharing schemes.

11. The complete set of forward markets gives resource owners a
complete picture of the intertemporal resource price trajectory
and guarantees that, through arbitrage, the r per cent rule is
satisfied and the correct initial extraction rates are
determined. The requirement that the market rate of interest
should equal the social discount rate is then tantamount to the
requirement that the present value endowments of all consumers -
present and future - should be appropriately distributed.

12. If, as the extraction programme unfolds, only a small number
of operators remain active after some date, the price-taking
assumption may no longer be viable, so the optimality properties
of what began as a competitive programme may break down. This
possibility is not taken up here. Partly it is no easy matter to
rationalize the exact point at which competition breaks down;
partly also operators will be aware of the uncompetitive tendency
from the initial date and may be able +to negate the effect
through intertemporal arbitrage.

13. BSee note 7.

14. As pointed out by Gamponia and Mendelsohn (1885), what
matters more than the direction of bias is the magnitude of the
welfare loss implied by the tax and, in particular, the welfare
loss implied by one tax versus another (assuming both are
designed to raise a given revenue). Using a model in which the
only costs are constant unit operating costs, Gamponia and
Mendelsohn simulate numerically, for different parameter values,
the effects of various distortionary taxes on the discounted
stream of consumer plus producer surplus. Their main finding is
that a tax on gross revenue entails the smallest loss.
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15. This can be deduced using broadly the same methed as that
used to verify the latter part of propositions 1 and 2.

16. If, however, the initial resource stock available to the
operator is a choice variable (e.g., the operator can choose how
much to spend on locating additional reserves) the tax 1is no
longer a pure rent tax and induces a reduction in the total stock
extracted. This is shown by Gaudet and Lasserre (1884). 1If, of
course, exploration costs are fully offset against taxable
income, +the neutrality of the rent tax is restored. However, as
Campbell and Lindner (1985) point out, under uncertainty about
the value of a deposit and with risk averse operators, a higher
rent tax rate may actually increase the ex ante probability of
exploitation following exploration (a rent +tax fulfils +the
function of a risk-sharing scheme) if the resource deposit is
viewed initially as being sufficiently promising or sufficiently
unpromising.

17. Strictly speaking, this equilibrium is sustainable only if
the resource 1is instantly perishable. Suppose, to take the
opposite extreme, that the rescurce can be stored costlessly.
Then the resource price cannot rise by more than r per cent. But
then the resource owners cannot be induced to hold on to the
resource after T (because the present value of marginal profit is
declining over time), 1i.e., +they wish to continue producing at
full capacity after T. At the same time, if all resource owners
depleted at maximum capacity, exhaustion would occur in finite
time, and willingness to pay for the resource at the margin would
be infinite. So the conditions required for equilibrium seem
inconsistent with one another.

18. Although propositions 1 and 2 (section 2C) tell us that, to
the extent that operators respond to risk in future returns by
increasing +their discount rates, the effect on +the pace of
depletion is ambiguous.

19. Naturally the multiplier functions will differ from their
analogues in the previous sections. The same symbols are used
throughout to economize on notation.

20. The analysis is confined to the elastic portion of the demand
curve where marginal revenue is positive. If demand is everywhere
inelastic, the monopolist does best by supplying an arbitrarily
small amount of the resource at each date (see Tullock, 1979). It
may be objected that -~ for the current range of prices - the

demand for many exhaustible resources (oil in particular) is
inelastic, and yet we observe positive output by sellers with
putative monopoly power. There are a number of explanations for
this, including the presence of fringe resource suppliers,
conventionally produced substitutes that put a ceiling on the
resource price, and elastic long-term demand responses.

21. This sentence needs severe gualification: strictly speaking

it is correct only where there is a single deposit and a fixed
cost must be borne but there is no capacity constraint of any
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kind on extraction. With more than one deposit a) deposits are
exploited sequentially; b) competitive exploitation does not in
general reproduce the socially optimal outcome; and ¢) monopoly
exploitation is too conservationist (Hartwick et al., 1886).

22. m’(R)£0 1is in any case a second-order necessary (Legendre)
condition for an interior solution. Note that +this does not
necessarily interfere with the existence of an interior
maximizing solution in case (ii) (R’ (R)<0); see for example Lewis
et al. (1979, footnote 8).

23. Note that for the present case (N’ (R)>0) and the previous
case (N’(R)<0) the assumption that there is no chokeoff price -
so0 that the resource is exhausted only asymptotically - has been
retained for convenience. As an example, an inverse demand
function of the form p(R) = A log (B/R) (defined for R<B), where
A and B are positive constants, displays h’(R)>0, while p(R) = A
log (B/R) + (C/R) where C is also a positive constant, displays
n’(R)<0 for all R below a certain output. Neither form has a
chokeoff price. Another example appears in Lewis et al. (1979,
footnote 8).

24, Other equilibrium concepts, such as those based on Bertrand
conjectures or consistent conjectures, do not appear to have been
investigated in a resource extraction context.

25. The Nash-Cournot equilibrium appears to offer a close
approximation to the perfect equilibrium, which except in simple
cases 1is exceedingly difficult +to derive analytically (see
Newbery, 1981, pp. 633-58).

26. A symmetric distribution of output across operators for t>T
(i.e, once output begins +to decline) is the only solution
consistent with equilibrium. Temporal changes in the share of
individual firms in total output, though possibly consistent with
a perfectly competitive market structure, raise a contradiction

here. Given that deposits are identical in all respects, we
require +that pn = pj, all h,j (the marginal value of a unit of
stock in situ should be the same for every firm). From equation

(44), we then have
P(1+Vn/n) = p(l+V;/h)

for all h,j {(operating at less than full capacity), where vi =
_  Ri/fFRi . We therefore regquire vn(t) = vij(t) for all t. (Note that

if field h (say) operates at full capacity after T while field j
does not, this implies that vh<vj, which means that field h has
smaller capacity and contradicts the regquirement of identical
unit rents).

27. Phases on which Ii >0 but Ri<f(Ki) for deposit 1 are not
observed. To see this, note that Ri<f(Ki) implies e-rtp(R)=pi .
Since p cannot grow by more than r per cent on any interval of
time, e *tp(R)£m at all dates subsequently. Combining +this
information with the boundary condition on hi, one infers that hi
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must be zero on the proposed phase (and thereafter). But this
means that additional capital equipment in deposit i is
worthless.

28. If, for example, deposits are identical in all respects, an
optimal programme features identical capacity buildup across
deposits (see Appendix C) and thus identical extraction rates so
long as all deposits are worked at maximum capacity. However,
once the (final) phase of r per cent price growth begins,
extraction rates need no longer be identical across deposits.
Aggregate extraction must be time-decreasing, but this does not
preclude one deposit continuing to operate at capacity to
exhaustion, if extraction from at least one other deposit
declines sufficiently rapidly and exhibits a discontinuous
increase in output once the first is exhausted.

29. The table below gives an indication of past and projected
future output profiles for UK North Sea Oilfields. While there is
no such thing as a "representative" output profile for an
oilfield, very loosely speaking one can identify initial phases
of increasing output (during which “investment", including
exploration, is still being carried out), followed by phases of
roughly constant output and then of diminishing output. Although
one cannot claim that the analysis of this section is precisely
~applicable, the figures may be seen as suggestive. On a more
rigorous note, a study by Lasserre (1985b), using data for a
sample of North American non-ferrous mines, found capacity choice
{(the erection of a new operation or significant expansion of an
existing one) to be explained quite well in terms of price and
deposit data, beginning from the type of approach discussed in
this paper.

30. In general, capacity expansion may continue in other deposits
during this phase of r per cent price growth.

31. However, the constant extraction result obtained in the
single (fixed capital) input case is preserved here under a
Leontief technology of the form

Ri < min {f1i(Ki), f2i (Li)}

where f2i displays constant returns and is identical across
deposits. In this case, capital merely determines the upper bound
on feasible output: it does not otherwise affect the productivity
. of the variable input. Moreover successive units of the variable

factor are equally productive irrespective of which deposit they
are allocated to

Where +the technology given by (4°’) is concerned, Lewis
(1985) has pointed out that if capital imposes an upper bound on
production in the sense that fi (Ki,Li) is maximized, for given
Ki, by some finite Li*(Ki), then "capacity" in this sense will
never be fully employed. The reason is that at Li* the marginal
product of L in deposit i would be driven to zero, contradicting
condition (55).
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32. Hung constructs the following example for N=2. For deposit 1

extraction costs are linear and given by ciRi, while for deposit
2 they are given by C2(R2), with C2’(.) > 0, Cz2"(.) > 0 and
C2’(0) > ct1. The maximand is, as usual, the stream of consumer

plus producer surplus, discounted at the appropriate rate r.

To Dbegin with, it can be demonstrated that, if any ¢€-
interval contains a strict sequencing of extraction (that is, the
interval contains a switch from production in deposit 1 only to
production in deposit 2 only, or vice-versa), then reallocating
production over the interval to achieve simultaneous exploitation
vields an increase in the objective function. This holds so long
as one deposit at least displays a strictly convex cost function
(diminishing returns to scale). So a non-degenerate interval of
time can be found during which output from both deposits is
positive. Next, on this latter interval

e rt{p(Rit+Rz) - c1} = m
e rt{p(Ri+R2)~- C2’(R2)} = m2

where pm  and p2 are constants (the present value rents).
Eliminating p(.) between these two equations yields that

ct + mert = Cz2’(R2) + pzert, or
r (m - pz)ert = Cz"(Rz)Rz

by time-differentiation. Finally, we require i >p2 (the high cost
deposit has a lower rent, otherwise it can be shown to remain in
the ground forever, which is suboptimal), so that R2>0. Needless
to say total output of the resource must nonetheless be declining
over this interval.

33. Naturally the wvalidity of the result +that follows is
restricted to the case where decay is both mechanistic and
continuous. If, for example, a given piece of plant equipment
either works or does not, and the probability of failure depends
upon maintenance/replacement expenditure (and possibly the
intensity of use), one would expect still to observe phases
during which total production of the resource is constant.

34. See note 31.
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