Veronika Lenivova

Fraunhofer IEG

Contact

WP_Query Object
(
    [query] => Array
        (
            [post_type] => publications
            [posts_per_page] => -1
            [meta_query] => Array
                (
                    [0] => Array
                        (
                            [key] => author
                            [value] => 44645
                            [compare] => LIKE
                        )

                )

        )

    [query_vars] => Array
        (
            [post_type] => publications
            [posts_per_page] => -1
            [meta_query] => Array
                (
                    [0] => Array
                        (
                            [key] => author
                            [value] => 44645
                            [compare] => LIKE
                        )

                )

            [error] => 
            [m] => 
            [p] => 0
            [post_parent] => 
            [subpost] => 
            [subpost_id] => 
            [attachment] => 
            [attachment_id] => 0
            [name] => 
            [pagename] => 
            [page_id] => 0
            [second] => 
            [minute] => 
            [hour] => 
            [day] => 0
            [monthnum] => 0
            [year] => 0
            [w] => 0
            [category_name] => 
            [tag] => 
            [cat] => 
            [tag_id] => 
            [author] => 
            [author_name] => 
            [feed] => 
            [tb] => 
            [paged] => 0
            [meta_key] => 
            [meta_value] => 
            [preview] => 
            [s] => 
            [sentence] => 
            [title] => 
            [fields] => 
            [menu_order] => 
            [embed] => 
            [category__in] => Array
                (
                )

            [category__not_in] => Array
                (
                )

            [category__and] => Array
                (
                )

            [post__in] => Array
                (
                )

            [post__not_in] => Array
                (
                )

            [post_name__in] => Array
                (
                )

            [tag__in] => Array
                (
                )

            [tag__not_in] => Array
                (
                )

            [tag__and] => Array
                (
                )

            [tag_slug__in] => Array
                (
                )

            [tag_slug__and] => Array
                (
                )

            [post_parent__in] => Array
                (
                )

            [post_parent__not_in] => Array
                (
                )

            [author__in] => Array
                (
                )

            [author__not_in] => Array
                (
                )

            [search_columns] => Array
                (
                )

            [ignore_sticky_posts] => 
            [suppress_filters] => 
            [cache_results] => 1
            [update_post_term_cache] => 1
            [update_menu_item_cache] => 
            [lazy_load_term_meta] => 1
            [update_post_meta_cache] => 1
            [nopaging] => 1
            [comments_per_page] => 50
            [no_found_rows] => 
            [order] => DESC
        )

    [tax_query] => WP_Tax_Query Object
        (
            [queries] => Array
                (
                )

            [relation] => AND
            [table_aliases:protected] => Array
                (
                )

            [queried_terms] => Array
                (
                )

            [primary_table] => wp_posts
            [primary_id_column] => ID
        )

    [meta_query] => WP_Meta_Query Object
        (
            [queries] => Array
                (
                    [0] => Array
                        (
                            [key] => author
                            [value] => 44645
                            [compare] => LIKE
                        )

                    [relation] => OR
                )

            [relation] => AND
            [meta_table] => wp_postmeta
            [meta_id_column] => post_id
            [primary_table] => wp_posts
            [primary_id_column] => ID
            [table_aliases:protected] => Array
                (
                    [0] => wp_postmeta
                )

            [clauses:protected] => Array
                (
                    [wp_postmeta] => Array
                        (
                            [key] => author
                            [value] => 44645
                            [compare] => LIKE
                            [compare_key] => =
                            [alias] => wp_postmeta
                            [cast] => CHAR
                        )

                )

            [has_or_relation:protected] => 
        )

    [date_query] => 
    [request] => 
			SELECT   wp_posts.*
			FROM wp_posts  INNER JOIN wp_postmeta ON ( wp_posts.ID = wp_postmeta.post_id )
			WHERE 1=1  AND ( 
  ( wp_postmeta.meta_key = 'author' AND wp_postmeta.meta_value LIKE '{4bad5ea18ad1f348cbe166fafda61baa144cf1792a0b0dbe3c8326086befc215}44645{4bad5ea18ad1f348cbe166fafda61baa144cf1792a0b0dbe3c8326086befc215}' )
) AND ((wp_posts.post_type = 'publications' AND (wp_posts.post_status = 'publish' OR wp_posts.post_status = 'acf-disabled' OR wp_posts.post_status = 'wc-fraud-screen' OR wp_posts.post_status = 'wc-authorised')))
			GROUP BY wp_posts.ID
			ORDER BY wp_posts.post_date DESC
			
		
    [posts] => Array
        (
            [0] => WP_Post Object
                (
                    [ID] => 46685
                    [post_author] => 974
                    [post_date] => 2023-11-02 11:01:24
                    [post_date_gmt] => 2023-11-02 11:01:24
                    [post_content] => As the world races to decarbonize its energy systems, the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the techno-economic characteristics of these two transmission technologies.

Hydrogen pipelines offer the advantage of transporting larger energy volumes, but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks, capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However, hydrogen’s unique characteristics, such as its small molecular size and compression requirements, present construction challenges. On the other hand, HVDC lines, while less voluminous, excel in efficiently transmitting green electrons over long distances. They already form an extensive global network, and their efficiency makes them suitable for various applications. Yet, intermittent renewable energy sources pose challenges for both hydrogen and electricity systems, necessitating solutions like storage and blending.

Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape, they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure, adaptability, risk assessment, and social acceptance. Furthermore, while both HVDC lines and hydrogen pipelines are expected to proliferate, other factors such as market maturity of the relevant energy vector, government policies, and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge, and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
                    [post_title] => Hydrogen pipelines vs. HVDC lines: Should we transfer green molecules or electrons?
                    [post_excerpt] => 
                    [post_status] => publish
                    [comment_status] => closed
                    [ping_status] => closed
                    [post_password] => 
                    [post_name] => hydrogen-pipelines-vs-hvdc-lines-should-we-transfer-green-molecules-or-electrons
                    [to_ping] => 
                    [pinged] => 
                    [post_modified] => 2023-11-28 11:20:22
                    [post_modified_gmt] => 2023-11-28 11:20:22
                    [post_content_filtered] => 
                    [post_parent] => 0
                    [guid] => https://www.oxfordenergy.org/?post_type=publications&p=46685
                    [menu_order] => 0
                    [post_type] => publications
                    [post_mime_type] => 
                    [comment_count] => 0
                    [filter] => raw
                )

            [1] => WP_Post Object
                (
                    [ID] => 44644
                    [post_author] => 111
                    [post_date] => 2022-03-11 12:00:48
                    [post_date_gmt] => 2022-03-11 12:00:48
                    [post_content] => This paper considers potential import routes for low-carbon and renewable hydrogen (H2) to main European markets like Germany. In particular, it analyses claims made by Hydrogen Europe and subsequently picked up by the European Commission in its Hydrogen Strategy that there will be 40GW of electrolyser capacity in nearby countries providing hydrogen imports to Europe by 2030.   The analysis shows that by 2030, potential demand for H2 could be high enough to initiate some limited international hydrogen trade, most likely between European countries initially, rather than from outside Europe. Geographically, a northern hydrogen cluster around Netherlands and NW Germany will be more significant for hydrogen demand, while southern Europe is more likely to have surplus low cost renewable power generation.  The paper considers potential H2 exporters to Europe, including Ukraine and North African countries (in line with the proposal from Hydrogen Europe) as well as Norway and Russia. (The research pre-dates recent political and military tensions between Russia and Ukraine which are likely to influence future development pathways).   The supply cost of hydrogen in 2030 is predicted to be in a reasonably (and perhaps surprisingly) narrow band around €3/kg from various sources and supply chains. The paper concludes that overall, while imports of hydrogen to Europe are certainly possible in the longer term, there are many challenges to be addressed. This conclusion supports the growing consensus that development of low carbon hydrogen, certainly within Europe, is likely to start within relatively local hydrogen clusters, with some limited bilateral trade.
                    [post_title] => Potential development of renewable hydrogen imports to European markets until 2030
                    [post_excerpt] => 
                    [post_status] => publish
                    [comment_status] => closed
                    [ping_status] => closed
                    [post_password] => 
                    [post_name] => potential-development-of-renewable-hydrogen-imports-to-european-markets-until-2030
                    [to_ping] => 
                    [pinged] => 
                    [post_modified] => 2022-03-11 12:58:14
                    [post_modified_gmt] => 2022-03-11 12:58:14
                    [post_content_filtered] => 
                    [post_parent] => 0
                    [guid] => https://www.oxfordenergy.org/?post_type=publications&p=44644
                    [menu_order] => 0
                    [post_type] => publications
                    [post_mime_type] => 
                    [comment_count] => 0
                    [filter] => raw
                )

        )

    [post_count] => 2
    [current_post] => -1
    [before_loop] => 1
    [in_the_loop] => 
    [post] => WP_Post Object
        (
            [ID] => 46685
            [post_author] => 974
            [post_date] => 2023-11-02 11:01:24
            [post_date_gmt] => 2023-11-02 11:01:24
            [post_content] => As the world races to decarbonize its energy systems, the choice between transmitting green energy as electrons through high-voltage direct current (HVDC) lines or as molecules via hydrogen pipelines emerges as a critical decision. This paper considers this pivotal choice and compares the techno-economic characteristics of these two transmission technologies.

Hydrogen pipelines offer the advantage of transporting larger energy volumes, but existing projects are dwarfed by the vast networks of HVDC transmission lines. Advocates for hydrogen pipelines see potential in expanding these networks, capitalizing on hydrogen’s physical similarities to natural gas and the potential for cost savings. However, hydrogen’s unique characteristics, such as its small molecular size and compression requirements, present construction challenges. On the other hand, HVDC lines, while less voluminous, excel in efficiently transmitting green electrons over long distances. They already form an extensive global network, and their efficiency makes them suitable for various applications. Yet, intermittent renewable energy sources pose challenges for both hydrogen and electricity systems, necessitating solutions like storage and blending.

Considering these technologies as standalone competitors belies their complementary nature. In the emerging energy landscape, they will be integral components of a complex system. Decisions on which technology to prioritize depend on factors such as existing infrastructure, adaptability, risk assessment, and social acceptance. Furthermore, while both HVDC lines and hydrogen pipelines are expected to proliferate, other factors such as market maturity of the relevant energy vector, government policies, and regulatory frameworks around grid development and utilization are also expected to play a crucial role. Energy transition is a multifaceted challenge, and accommodating both green molecules and electrons in our energy infrastructure may be the key to a sustainable future. This paper’s insights underline the importance of adopting a holistic perspective and recognising the unique strengths of each technology in shaping a resilient and sustainable energy ecosystem.
            [post_title] => Hydrogen pipelines vs. HVDC lines: Should we transfer green molecules or electrons?
            [post_excerpt] => 
            [post_status] => publish
            [comment_status] => closed
            [ping_status] => closed
            [post_password] => 
            [post_name] => hydrogen-pipelines-vs-hvdc-lines-should-we-transfer-green-molecules-or-electrons
            [to_ping] => 
            [pinged] => 
            [post_modified] => 2023-11-28 11:20:22
            [post_modified_gmt] => 2023-11-28 11:20:22
            [post_content_filtered] => 
            [post_parent] => 0
            [guid] => https://www.oxfordenergy.org/?post_type=publications&p=46685
            [menu_order] => 0
            [post_type] => publications
            [post_mime_type] => 
            [comment_count] => 0
            [filter] => raw
        )

    [comment_count] => 0
    [current_comment] => -1
    [found_posts] => 2
    [max_num_pages] => 0
    [max_num_comment_pages] => 0
    [is_single] => 
    [is_preview] => 
    [is_page] => 
    [is_archive] => 1
    [is_date] => 
    [is_year] => 
    [is_month] => 
    [is_day] => 
    [is_time] => 
    [is_author] => 
    [is_category] => 
    [is_tag] => 
    [is_tax] => 
    [is_search] => 
    [is_feed] => 
    [is_comment_feed] => 
    [is_trackback] => 
    [is_home] => 
    [is_privacy_policy] => 
    [is_404] => 
    [is_embed] => 
    [is_paged] => 
    [is_admin] => 
    [is_attachment] => 
    [is_singular] => 
    [is_robots] => 
    [is_favicon] => 
    [is_posts_page] => 
    [is_post_type_archive] => 1
    [query_vars_hash:WP_Query:private] => 23ba0472be7ed322d1200c88cc2d95e7
    [query_vars_changed:WP_Query:private] => 
    [thumbnails_cached] => 
    [allow_query_attachment_by_filename:protected] => 
    [stopwords:WP_Query:private] => 
    [compat_fields:WP_Query:private] => Array
        (
            [0] => query_vars_hash
            [1] => query_vars_changed
        )

    [compat_methods:WP_Query:private] => Array
        (
            [0] => init_query_flags
            [1] => parse_tax_query
        )

)

Latest Publications by Veronika Lenivova